
XVT Portability
Toolkit Guide

Copyrights

© 1992–2009 Providence Software Solutions, Inc. All rights
reserved.

The XVT application program interface, XVT manuals and
technical literature, and XVT software may not be reproduced in any
form or by any means except by permission in writing from
Providence Software Solutions, Inc.

XVT, XVT Development Solution for C, XVT Portability Toolkit,
XVT-Design, XVT Development Solution for C++, XVT-Power++,
and XVT-Architect are trademarks of Providence Software
Solutions, Inc. Other product names mentioned in this document are
trademarks or registered trademarks of their respective holders.

Published By

Providence Software Solutions, Inc.
201 Shannon Oaks Circle, Suite 200
Cary, NC 27511 USA

Revision History

First Printing December, 1996 DSC Release 4.5

Second Printing........ June, 1999............................... DSC Release 5

Revised..................... July, 2002 DSC Release 5.5

Revised..................... December, 2004 DSC Release 5.6

Revised..................... April, 2007 DSC Release 5.8

Revised..................... March, 2009 DSC Release 2009.1

Contents

Preface ... 2-xv
XVT Customer Support .. 2-xxi
XVT License Management... 2-xxvii

Chapter 1: Introduction to the XVT Portability Toolkit 1-1
1.1. The Elements of an XVT Application.................................... 1-1

1.1.1. Building Blocks .. 1-1
1.1.2. GUI Objects .. 1-2
1.1.3. Events and Event Handlers ... 1-2

1.2. XVT’s Development Solutions .. 1-2
1.2.1. XVT Development Solution for C.............................. 1-4
1.2.2. XVT Development Solution for C++ 1-4

1.3. Cross-platform GUI Development ... 1-4
1.3.1. Extensible Programming with XVT 1-4
1.3.2. Cross-platform Development Process for C 1-5
1.3.3. Cross-platform Development Process for C++........... 1-8

1.4. Getting the Most Out of the PTK ... 1-9
1.4.1. XVT Portability Toolkits .. 1-10
1.4.2. XVT’s Resource Compiler.. 1-10

1.4.3. XVT’s helpc Help Text Compiler 1-11
1.4.4. Multibyte Character Set and

Localization Support... 1-12

Chapter 2: About the XVT API.. 2-1
iii

2.1. The XVT Normalized API Naming Convention.................... 2-1
2.2. Objects, Inheritance, and Polymorphism 2-2

2.2.1. Objects .. 2-2
2.2.2. Inheritance and Polymorphism 2-3

2.3. Invoking XVT .. 2-4
2.4. System Attributes ... 2-6
2.5. Function Calling Convention Macro...................................... 2-7
2.6. Symbols for Conditional Compilation 2-8

2.6.1. Window System Symbols... 2-9
2.6.2. File System Symbols .. 2-9
2.6.3. Operating System Symbols... 2-9
2.6.4. Compiler Symbols .. 2-12

Chapter 3: GUI Elements.. 3-1
3.1. GUI Object Definitions .. 3-1
3.2. Comparison of Dialogs and Windows 3-2

XVT Portability Toolkit Guide

iv

3.3. Creating, Initializing, and Terminating
GUI Objects..3-4
3.3.1. Resource-based GUI Objects3-4
3.3.2. Structure-based GUI Objects3-7
3.3.3. Dynamic Windows..3-12
3.3.4. Initializing and Terminating Dialogs and

Windows ...3-12
3.4. Event Handler Functions ..3-13

3.4.1. Handling Window and Dialog Events3-14
3.4.2. Event Handling for Controls3-15
3.4.3. Event Handling For Menus3-16

3.5. Functions Common to Multiple GUI Objects3-18
3.5.1. Determining Parent Windows...................................3-18
3.5.2. Window and Dialog Dimensions

and Coordinates ..3-18
3.5.3. Controlling Keyboard Focus.....................................3-18
3.5.4. Controlling Window Stacking3-19
3.5.5. Setting and Getting Titles ...3-19
3.5.6. Moving, Resizing, Disabling, and Hiding Objects ...3-20
3.5.7. Determining Creation Flags, Handles, and IDs3-20
3.5.8. Destroying GUI Objects ...3-21

Chapter 4: Events .. 4-1
4.1. Types of Events ..4-3
4.2. The EVENT Data Structure..4-6
4.3. Event Handlers ...4-7
4.3.1. Sending Events..4-8
4.3.2. Recursive Calls to Event Handlers4-9
4.3.3. E_UPDATE Restrictions ..4-10

4.4. Managing Events ..4-12
4.4.1. Event Ordering Rules..4-12
4.4.2. Event Masking ..4-14
4.4.3. Defining Event and Keyboard Hooks4-15
4.4.4. Application Errors...4-16

4.5. Descriptions of XVT Events ..4-16
4.5.1. E_CHAR Events and Virtual Key Codes4-16
4.5.2. E_CLOSE Events..4-22
4.5.3. E_COMMAND Events ...4-23
4.5.4. E_CONTROL Events ...4-25
4.5.5. E_CREATE Events...4-26
4.5.6. E_DESTROY Events..4-27

Contents

4.5.7. E_FOCUS Events ... 4-29
4.5.8. E_FONT Events.. 4-31
4.5.9. E_HELP Events .. 4-37

4.5.10. E_HSCROLL and E_VSCROLL Events 4-38
4.5.11. E_MOUSE_DBL Events .. 4-44
4.5.12. E_MOUSE_DOWN Events...................................... 4-46
4.5.13. E_MOUSE_MOVE Events 4-48
4.5.14. E_MOUSE_SCROLL Events................................... 4-52
4.5.15. E_MOUSE_UP Events ... 4-54
4.5.16. E_QUIT Events .. 4-55
4.5.17. E_SIZE Events.. 4-58
4.5.18. E_TIMER Events.. 4-61
4.5.19. E_UPDATE Events .. 4-63
4.5.20. E_USER Events.. 4-66

Chapter 5: Resources and XRC.. 5-1
5.1. Resources ... 5-2

5.1.1. Predefined Resources.. 5-2
5.1.2. Other System-Specific Resources............................... 5-2
5.1.3. Binary Resources .. 5-3

5.2. Portable Resource Concepts... 5-3
5.2.1. Creating Portable Resources with XRC...................... 5-3
5.2.2. General Rules for Coding Resources.......................... 5-5
5.2.3. Resources for Internationalized Applications............. 5-6
v

5.2.4. XVT Coordinate Units for Resources......................... 5-6
5.2.5. Formatting GUI Objects for Different Platforms 5-8

5.3. XRC Language Specification ... 5-9
5.4. Writing XRC Scripts .. 5-12
5.5. Compiling XRC.. 5-12
5.6. Sample XRC Script .. 5-13

Chapter 6: Windows .. 6-1
6.1. Screen and Task Windows ... 6-2

6.1.1. Screen Window... 6-2
6.1.2. Task Window.. 6-3

6.2. Top-level, Child, and Modal Windows.................................. 6-5
6.2.1. Top-level Windows .. 6-5
6.2.2. Child Windows ... 6-6
6.2.3. Modal Windows.. 6-6

6.3. XVT WINDOWs and Window Types 6-7
6.3.1. NULL_WIN Symbol .. 6-7
6.3.2. WIN_TYPE Data Type... 6-7

XVT Portability Toolkit Guide

vi

6.3.3. Window Types ..6-8
6.3.4. Client Area ..6-11

6.4. Creating Windows ..6-11
6.4.1. Dynamic Windows..6-11
6.4.2. Resource-based Windows...6-12
6.4.3. Structure-based Windows ...6-12

6.5. Replacing and Retrieving Window Event
Handlers..6-13

6.6. Keyboard Navigation in Windows6-14
6.7. Working with Child Windows..6-15

6.7.1. Benefits of Child Windows.......................................6-15
6.7.2. Determining Parent Windows...................................6-16
6.7.3. Listing Window Descendants6-16
6.7.4. Enumerating Windows..6-16

6.8. Associating Application Data with Windows6-18
6.9. Updating Windows...6-19

6.9.1. Drawing...6-19
6.9.2. Clipping...6-20

6.10. Window Titles ..6-20
6.11. Window Scrollbars and Scrolling...6-21

6.11.1. Proportional Scrollbars ...6-21
6.11.2. Scrolling ..6-21

6.12. Other Window Operations..6-22
6.13. Window Manipulation Functions ...6-23

Chapter 7: Dialogs ... 7-1

7.1. Modal and Modeless Dialogs ...7-1
7.2. Defining and Creating Dialogs...7-4

7.2.1. Resource-based Dialogs..7-4
7.2.2. In-memory Structures ...7-5

7.3. Predefined Dialogs ...7-6
7.4. Dialog Manipulation Functions..7-7

Chapter 8: Controls ... 8-1
8.1. Creating and Defining Controls..8-3
8.2. Control Event Structures ..8-4
8.3. Descriptions of XVT Controls..8-7

8.3.1. Push Buttons ...8-7
8.3.2. Check Boxes ...8-8
8.3.3. Radio Buttons..8-10
8.3.4. Static Text ...8-12
8.3.5. Edit Fields ...8-13

Contents

8.3.6. List Boxes ... 8-16
8.3.7. Scrollbars .. 8-20
8.3.8. List Button .. 8-22
8.3.9. List Edit .. 8-24

8.3.10. Group Boxes ... 8-28
8.3.11. Notebooks ... 8-30
8.3.12. HTML Controls .. 8-35
8.3.13. Icons.. 8-39
8.3.14. Text Edit Objects .. 8-41
8.3.15. Treeview Controls .. 8-52

8.4. Control Attributes... 8-56
8.4.1. Control Fonts .. 8-56
8.4.2. Control Colors .. 8-58

8.5. Control Mnemonics.. 8-65
8.5.1. Setting Control Mnemonics 8-65
8.5.2. Getting Control Mnemonics 8-66
8.5.3. Processing Mnemonic Characters............................. 8-66

Chapter 9: Menus .. 9-1
9.1. Menu Definitions.. 9-3
9.2. Menu Events... 9-4
9.3. Defining Menus.. 9-4

9.3.1. XRC Menubar Definitions .. 9-4
9.3.2. MENU_ITEM Data Structures 9-5
vii

9.4. Managing Menus and Menu Attributes.................................. 9-6
9.4.1. Creating a Menu Hierarchy without Resources.......... 9-6
9.4.2. Modifying Menus ... 9-6
9.4.3. Menu Item Strings and Menu Mnemonics 9-7
9.4.4. Checking Menu Items... 9-7
9.4.5. Enabled or Disabled Menu Items 9-8
9.4.6. Separators ... 9-8

9.5. Pop-up Menus .. 9-8

Chapter 10: Coordinate Systems.. 10-1
10.1. SCREEN_WIN and TASK_WIN .. 10-1
10.2. Client Area Location .. 10-3
10.3. Coordinates for Drawing Text.. 10-4
10.4. Points and Rectangles... 10-4
10.5. Display and System Metrics... 10-7

Chapter 11: Drawing and Pictures... 11-1
11.1. Drawing.. 11-2

XVT Portability Toolkit Guide

viii

11.1.1. Color ...11-2
11.1.2. Drawing Tools ..11-4
11.1.3. Graphic Shapes, Text, and Pictures11-12

11.2. Pictures ...11-16
11.2.1. Creating and Accessing Pictures.............................11-17
11.2.2. Saving and Retrieving Pictures From Files11-18

Chapter 12: Portable Images .. 12-1
12.1. Image Terminology ..12-2
12.2. Color ...12-3

12.2.1. Color Look-Up Tables ..12-3
12.2.2. Color Mapping ..12-3

12.3. Palettes..12-4
12.4. Portable File I/O ...12-5
12.5. Working with Portable Images...12-5

12.5.1. Images ...12-5
12.5.2. Pixmaps...12-8
12.5.3. Color Palettes ..12-11
12.5.4. Transfer Operations ..12-14
12.5.5. File Operations..12-15

Chapter 13: Scrolling... 13-1
13.1. Basic Scrolling Concepts..13-2

13.1.1. Scrollbar Range...13-3
13.1.2. Document Origin ..13-4
13.1.3. Thumb Position...13-4

13.1.4. Thumb Proportion ...13-4
13.1.5. Auto-scrolling ...13-5

13.2. XVT-provided Scrolling Functions......................................13-6
13.3. Sample Scrolling Algorithms ...13-6

13.3.1. Task 1: Maintaining the Scrollbar Settings
(scroll_sync)..13-7

13.3.2. Task 2: Calculating the Amount to Scroll
(do_scroll) ...13-10

13.3.3. Task 3: Scrolling the View Window (shift_view) ..13-13
13.4. Special Scrolling Situations..13-16

Chapter 14: Cursors and Carets .. 14-1
14.1. Cursors..14-1

14.1.1. The Waiting Cursor...14-2
14.1.2. Hiding the Cursor..14-2

14.2. Trapping the Mouse..14-2

Contents

14.3. Carets.. 14-3
14.3.1. Logical vs. Physical Carets....................................... 14-3
14.3.2. Hiding the Caret.. 14-3
14.3.3. Positioning and Sizing the Caret............................... 14-4

Chapter 15: Fonts and Text .. 15-1
15.1. Font Terminology... 15-2
15.2. Basic Font Concepts... 15-3

15.2.1. Logical Font Attributes... 15-3
15.2.2. Logical Font Functions ... 15-4
15.2.3. Font Mappers .. 15-5
15.2.4. Font Selection Dialogs.. 15-6
15.2.5. Font/Style Menus.. 15-6

15.3. Logical Fonts.. 15-7
15.3.1. Logical Font Attributes... 15-7
15.3.2. XVT_FNTID .. 15-10

15.4. Working with Logical Fonts .. 15-10
15.4.1. Creating and Destroying Logical Fonts 15-10
15.4.2. Using Logical Fonts from Resource Files 15-11
15.4.3. Logical Font Ownership ... 15-11
15.4.4. Setting and Getting Logical Font Attributes........... 15-12
15.4.5. Assigning Logical Fonts to Controls and Windows15-17
15.4.6. Copying Logical Fonts ... 15-18
15.4.7. Verifying a Font ID .. 15-19
ix

15.5. Font Mapping and the Font Mapping Controller 15-19
15.5.1. Font Mapping in an Encapsulated Font Model....... 15-19
15.5.2. The Multi-Level Mapping Process 15-20
15.5.3. Types of Mappers ... 15-21
15.5.4. When Mapping Occurs ... 15-22
15.5.5. Mapping and Unmapping Logical Fonts 15-22
15.5.6. Application-Supplied Font Mappers....................... 15-23
15.5.7. XRC Font Mapper... 15-25
15.5.8. XVT Default Font Mapper 15-28

15.6. Font Selection Dialogs ... 15-30
15.6.1. Implementing a Font Selection Dialog 15-30
15.6.2. Customized Font Selection Dialogs........................ 15-31

15.7. Font/Style Menus ... 15-33
15.7.1. Implementing a Font/Style Menu 15-33
15.7.2. Responding to User Font Changes 15-34

15.8. Working with Text ... 15-35
15.8.1. Text Width and Font Metrics.................................. 15-35

XVT Portability Toolkit Guide

x

15.8.2. Showing Text Selections...15-36
15.8.3. Transferring Logical Font Information15-37

Chapter 16: Clipboard .. 16-1
16.1. Clipboard Formats ..16-1

16.1.1. CB_TEXT ...16-1
16.1.2. CB_PICT...16-2
16.1.3. CB_APPL ...16-2

16.2. Putting Data On the Clipboard ...16-3
16.3. Getting Data Off the Clipboard ..16-4
16.4. Handling Cut, Copy, and Paste Commands16-5

Chapter 17: Files .. 17-1
17.1. Portable Filenames, Directories, and Types17-2

17.1.1. SZ_FNAME Constant...17-2
17.1.2. SZ_LEAFNAME Constant17-2
17.1.3. FILE_SPEC Data Type...17-2
17.1.4. DIRECTORYs ..17-3
17.1.5. File Types..17-4

17.2. Getting and Setting File Attributes.......................................17-5
17.3. File Input and Output Using Standard Functions17-6
17.4. Processing Selected Files ...17-6
17.5. Standard File Dialogs ...17-7

Chapter 18: Printing.. 18-1
18.1. Basic Printing Steps..18-1
18.2. Print Records and Print Windows ..18-2
18.2.1. Print Records...18-2
18.2.2. Print Windows ..18-3

18.3. Printing to a Print Window...18-3
18.3.1. Print Pages ..18-3
18.3.2. Print Bands..18-4
18.3.3. Writing a Portable Printing Function........................18-4
18.3.4. Calls You Can Make From a Print Function18-5
18.3.5. Sample Print Function...18-6

18.4. Printing Restrictions ...18-7
18.5. Printer Page Setup ..18-8

18.5.1. Page Setup Dialog...18-8
18.5.2. Print Metrics..18-8

18.6. Aborting a Print Job..18-9
18.7. Initiating and Terminating Printing18-10
18.8. Printer Driver Issues ...18-10

Contents

Chapter 19: Multibyte Character Sets and Localization 19-1
19.1. Around the World with XVT ... 19-1

19.1.1. About Internationalization and Localization 19-1
19.1.2. Multibyte Awareness in XVT Applications 19-14

19.2. How the XVT API Supports Internationalization 19-17
19.2.1. PTK Filenaming Conventions 19-18
19.2.2. XVT Portable Attributes... 19-22
19.2.3. XVT Data Types... 19-23
19.2.4. XVT Constants ... 19-24
19.2.5. XVT String Functions... 19-25
19.2.6. E_CHAR Events ... 19-29
19.2.7. Resource File Binding .. 19-32

19.3. Internationalizing XVT Applications................................. 19-34
19.3.1. Using the XVT Resource Compiler

(XRC).. 19-34
19.3.2. Extracting String Literals.. 19-35
19.3.3. Processing Characters and Strings.......................... 19-39
19.3.4. Formatting Locale-specific Strings......................... 19-43
19.3.5. Handling Character Events 19-44
19.3.6. Extracting Graphics and Colors.............................. 19-45
19.3.7. Loading Fonts ... 19-46
19.3.8. Generalizing GUI Objects Positions and Sizes 19-47

19.4. Localizing XVT Applications .. 19-48
19.4.1. Selecting the Environment...................................... 19-48
xi

19.4.2. Translating Strings.. 19-48
19.4.3. Replacing Colors and Graphics 19-51
19.4.4. Adjusting Object Sizes and Positions 19-51
19.4.5. Using XVT’s Utility Programs to

Write Localized Applications 19-52
19.4.6. Localizing the XVT Portable Help Viewer 19-54
19.4.7. Selecting the Environment and Initializing

the Application.. 19-55

Chapter 20: Memory Allocation... 20-1
20.1. Application and Global Heaps ... 20-1
20.2. XVT Substitutes for malloc, realloc, and free...................... 20-1
20.3. Allocating Memory on the Global Heap 20-2
20.4. ATTR_MEMORY_MANAGER Attribute.......................... 20-2
20.5. Resource Memory Allocation .. 20-3

Chapter 21: Diagnostics and Debugging...................................... 21-1
21.1. XVT Error Checking Techniques .. 21-1

XVT Portability Toolkit Guide

xii

21.1.1. Arguments and Return Values21-1
21.1.2. Error Handlers...21-2

21.2. XVT Error Signaling ..21-2
21.2.1. Error Codes (XVT_ERRID)21-3
21.2.2. Types of Errors ...21-3
21.2.3. Error Message Objects ..21-4

21.3. Error Handlers ..21-4
21.3.1. Error Handler Hierarchies...21-4

21.4. XVT’s errscan Tool ..21-6
21.5. Error Files ...21-7

21.5.1. Error Header Files...21-7
21.5.2. XVT Error Message File...21-7
21.5.3. Debug File for Error Tracing21-8

21.6. Error Dialogs ..21-8

Chapter 22: Hypertext Online Help... 22-1
22.1. Help System Components ..22-1
22.2. XVT Help Viewer ..22-3

22.2.1. Help Windows ..22-3
22.2.2. Navigation...22-5
22.2.3. Searching...22-8

22.3. Invoking Help...22-9
22.3.1. Spot Help ..22-9
22.3.2. Object-click Help ..22-9
22.3.3. Menu Help ..22-10
22.3.4. Invoking Help Programmatically............................22-10
22.4. Adding Online Help to an Application...............................22-11
22.4.1. Help Viewers ..22-12
22.4.2. Header Files ..22-12
22.4.3. Resource Files ...22-13
22.4.4. Creating a Help Menu...22-13
22.4.5. Opening a Help File ..22-14
22.4.6. Associating Topics with Objects22-14
22.4.7. Disassociating Topics from Objects22-17
22.4.8. Event Handling ...22-17
22.4.9. Displaying Help Topics ..22-17

22.4.10. Handling Object-Click Help22-18
22.4.11. Modal Dialogs and Help ...22-18

22.5. Help Source File Format ..22-18
22.5.1. How the Help System Applies

Formatting Commands..22-19

Contents

22.5.2. Predefined Help Topic Information........................ 22-20
22.6. The Help Compiler... 22-23

22.6.1. Manifest Constants ... 22-23
22.6.2. Help Source File Text Limitations 22-24

Languages and Codesets ... A-1
A.1. Language Abbreviations ... A-2
A.2. Character Codeset Abbreviations.. A-6

Utilities ...B-1
B.1. String List (SLIST) Functions... B-1
B.2. The I/O Stream Object .. B-3
B.3. NOREF.. B-4

Index... 1-1
xiii

XVT Portability Toolkit Guide

xiv

Preface

GUIDE
PREFACE

This Guide presents a basic yet thorough treatment of portable
GUI programming with XVT’s Portability Toolkit. XVT offers a
Development Solution for C (DSC) and a Development Solution for
C++ (DSC++). The XVT Portability Toolkit is the portable API for
both DSC and DSC++.

This Guide, organized by subjects, complements the XVT
Portability Toolkit Reference, which is an alphabetical listing of
Application Programming Interface (API) elements. The Guide
aims to get you programming as quickly as possible with XVT. On
the other hand, you’ll want to refer to the Reference throughout your
development efforts.

How to Use the Guide
xv

To get the most out of this Guide, XVT recommends the following
approach:

• Read Chapters 1–5 to familiarize yourself with the XVT
platform-independent approach to application programming.

• Read Chapters 6–9 to learn about the basic XVT building
blocks.

• Read subsequent chapters to the depth required. The chapters
are organized so that deeper levels of subject matter detail are
treated in later chapters. Initially, your reading should
concentrate on the top levels, to get a basic understanding. As
you need more depth, you can read the chapters containing
more detail.

XVT Portability Toolkit Guide

xvi

If you are an XVT-Design user, work through the Tutorial chapter of
the XVT-Design Manual. The XVT-Design Manual introduces you to
using XVT-Design in conjunction with the XVT Portability Toolkit. The
tutorial gives you an experiential appreciation for the capabilities of
XVT-Design and the XVT Portability Toolkit. It introduces you to the
GUI application structure and to laying out GUI objects, setting their
attributes, constructing menubars, setting connections and seeing
them in operation through Testmode, and entering source code in the
Action Code Editor.

Other XVT Documentation
XVT provides many different documents, in PDF formats:
Release Notes and Installation Instructions

Platform-specific information about how to install the DSC is
placed in the installation instructions. The release notes tell you
what is new or changed with this release. This information,
which includes environment configuration for your platform,
appears on your distribution media, in the install.txt file.

XVT Portability Toolkit Guide
This manual presents a basic yet thorough treatment of portable
GUI programming with the XVT Portability Toolkit (PTK).

γ

XVT Portability Toolkit Reference
This documentation contains reference information for all API
elements of the XVT PTK: portable attributes, events, data
types, constants, and functions.

XVT Portability Toolkit Quick Reference
This small document encapsulates the XVT Portability Toolkit
Reference, along with details about the XRC language.

XVT Platform-Specific Books
Each book contains information you need to use the PTK on a
particular XVT-supported platform. The information about
non-portable attributes and escape codes is especially useful.

XVT-Design Manual
This manual is both guide and reference for XVT-Design, the
visual programming tool that is included with XVT
Development Solution for C (DSC). It introduces you to
portable GUI programming using XVT-Design.

Preface

XVT-PowerObjects GUI Components Pak 1
This document is both guide and reference for the GUI
components, XVT-PowerObjects, included with the XVT
Development Solution for C.

XVT Technical Notes
XVT provides Technical Notes on your distribution media,
in the doc directory.

Guide to XVT Development Solution for C++
This manual presents an introduction to portable GUI
programming using XVT-Architect and the DSC++
framework. It also introduces you to the application–
document–view paradigm that is the cornerstone of XVT-based
object-oriented programming.

XVT DSC++ Reference
This reference manual describes all the classes of the DSC++
framework.

XVT Development Solution for C ++ Quick Reference
This small document encapsulates the XVT Power++
Reference.

The documentation is designed to give you the information you need
to use the XVT Portability Toolkit at all levels, from introductory
(the Guides, particularly the first nine chapters) to advanced (the
References).
xvii

XVT Portability Toolkit Guide

xviii

About This Manual
XVT takes pride in its documentation, and continually seeks to
improve it. If you find a documentation error, please contact XVT
Customer Support. They will forward your suggestion to XVT’s
documentation team.

Conventions Used in This Manual
In this manual, the following typographic and code conventions
indicate different types of information.

General Conventions
code

This typestyle is used for code and code elements (names of
functions, data types and values, attributes, options, flags,
events, and so on). It also is used for environment variables and
commands.

code bold
This typestyle is used for elements that you see in the user
interface of applications, such as compilers and debuggers. An
arrow separates each successive level of selection that you need
to make through a series of menus, e.g., Edit=>Font=>Size.

bold
Bold type is used for filenames, directory names, and program
names (utilities, compilers, and other executables).

italics

Italics are used for emphasis, for the names of other documents,
and in cross-references to chapters inside the same document.

Tip: This marks the beginning of a procedure having one or more steps.
Tips can help you quickly locate “how-to” information.

Note: An italic heading like this marks a standard kind of information:
a Note, Caution, Example, Tip, or See Also (cross-reference).

This symbol and typestyle highlight information specific to using
XVT-Design, XVT’s visual programming tool and code generator.

Code Conventions
<non-literal element> or non_literal_element

Angle brackets or italics indicate a non-literal element, for
which you would type a substitute.

γ

Preface

[optional element]
Square brackets indicate an optional element.

...
Ellipses in data values and data types indicate that these values
and types are opaque. You should not depend upon the actual
values and data types that may be defined.
xix

XVT Portability Toolkit Guide

xx

XVT Customer Support

XVT CUSTOMER SUPPORT
When you buy an XVT product or an XVT maintenance agreement,
you gain access to some of the most advanced application
development assistance in the industry.

If you have problems or questions while using XVT products, you
can talk to an XVT Customer Support Engineer. XVT Customer
Support helps you make more effective use of XVT products,
enabling you to get your application up and running as quickly as
possible. Customer Support is available to customers who have
purchased an XVT product and have a current maintenance contract.

Please note that only one individual per purchased copy of an XVT
product may request support. Questions will be taken only from the
individual named on the software registration form.

Feel free to contact XVT Customer Support if you have a question,
xxi

or would like to suggest a software enhancement or a change to any
document. Your call is always welcome.

How Customer Support Works

XVT’s Customer Support goal is to respond to all requests within
twenty-four hours. As soon as we log your call into our system, you
will receive a service request number.

If we have questions about your request, we ask that you respond to
them within five working days. Please let us know if you need more
time; otherwise, if we receive no response from you after five days,
your service request will be closed.

XVT Portability Toolkit Guide

xxii

What XVT Customer Support Provides
XVT Customer Support can serve you better if you understand what
services are available.

This is what XVT’s Customer Support can do:
• Provide “tips” to help you effectively use XVT functionality
• Explain XVT functionality and specifications
• Diagnose and analyze XVT-related application problems
• Suggest workarounds
• Suggest how to access native window system development

tools
• Collect feedback for future product development

Keep in mind that XVT Customer Support cannot do the following:
• Design customer applications
• Debug user code
• Explain how to use operating systems, window systems, or

compilers (except with regard to XVT application resources)
• Explain how to use native window system development tools
• Extensively teach XVT programming

If you need more help than Customer Service can provide, consider
contacting XVT’s Professional Services Group. More information
about this group can be found on the last page of this section of this

Guide.

XVT Customer Support

Customer Support Services
XVT’s Customer Support engineers can answer questions that arise
from the use of a native GUI platform, or the operating system itself
(see the following subsections, “Standard Customer Support
Services” and “Extended Support Services”). When questions
require investigation, you are given a follow-up reference number
that identifies your inquiry in our Customer Support database. These
pending requests for information are reviewed several times each
day, to ensure a timely reply.

Standard Customer Support Services
XVT Customer Support personnel are experienced software
developers that specialize in the use of XVT products on supported
MS-Win32, Motif, and Macintosh computer systems. For registered
named users, XVT offers the following standard services:

• Easy access by phone, fax, and electronic mail
• One day (maximum 24 hour) call backs after your initial call

is received
• An assigned Service Request number when your questions

are logged, so they are tracked and responded to efficiently
• Tips that speed the use of XVT functionality
• Explanations of XVT functionality and specifications to
xxiii

reinforce product manual descriptions
• Suggested workarounds for common development obstacles
• Suggestions for complementary products or native window

system environment tools that might enhance your
application or make you more productive

• Product enhancement requests are tracked and analyzed so
that customers significantly influence future product
development decisions

XVT Portability Toolkit Guide

xxiv

Extended Support Services
XVT recognizes that customers sometimes need comprehensive
assistance—the type of assistance and advice that has a broader
scope than just the XVT products that the customers have purchased.
The XVT Customer Support Extended Service Contract is a
convenient way to make use of XVT’s development expertise.
Extended Service allows you to:

• Get help debugging small user code examples
• Quick identification of common mistakes made during cross-

platform development
• Get information about operating systems, window systems,

or compilers you may not be familiar with (except with
regard to XVT application resources)

• Get guidance about how to use native window system
development tools that may be new to you

Note: You do not need to sign up for Extended Service in advance.

FTP Site
XVT’s FTP site is available to all currently registered customers,
and offers valuable information for XVT application developers.
Technical papers and notes, programming examples, product
updates, and programming utilities are available.

Support for XVT Software Purchased from

Distributors
XVT products are sold around the world, often through an
independent distributor licensed by XVT Software Inc. If you
purchased your XVT product through an international distributor,
your customer support requests must be routed through that
distributor. If, on the other hand, you purchased your XVT product
from an international office of XVT, you may contact XVT directly
for support. Instructions for contacting XVT Customer Support are
listed on the last page of this section of this Guide.

XVT Customer Support

Information We Need to Help You
When you contact XVT Customer Support, please supply the
following information:

• The name and version number of the product (for example,
XVT/Win32 5.6)

• The product serial number (found on your distribution media)
• Your platform type (for example, IBM RS/6000)
• The operating system and version number (for example,

 HP-UX 11i, Solaris 9)
• The compiler and version number (for example, THINK C

3.0 or Sun One Studio 7)
• The window manager and version number (for example,

Windows 2000)
• A detailed description of the problem, including information

displayed with any internal error message—such as the called
function, filename, and code line

Product Updates
Providence Software actively updates XVT. For most minor
releases, and for all major releases, Providence supplies additions to
or complete replacements for XVT documentation. As a service to
our customers, all product updates are made available from
xxv

Providence Software’s FTP site which can be accessed from our
website at:

www.xvt.com

Tip: Customers who are current on their XVT maintenance agreements
can download product updates from the FTP site.

How to Contact Customer Support
You can contact Software Customer Support for XVT in several
different ways:

• Telephone us at (919) 854-1800 x 201 (8:30 AM to 5:30 PM,
Eastern Standard Time, Monday-Friday)

• Send us electronic mail via the Internet at xvt-
support@xvt.com

• Write us at Providence Software Solutions, Inc., 201
Shannon Oaks Circle, Suite 200, Cary, NC 27511 USA

XVT Portability Toolkit Guide

xxvi

XVT’s Consulting and Training Services
Providence offers extensive fee-based services to help customers
use XVT products. Experienced professionals can help you learn
GUI programming, or help you prototype, design, code, debug, and
maintain your XVT applications.

In addition to consulting, Providence personnel also conduct on-site
and public training classes in XVT and GUI programming
techniques.

See Also: For more information about the Providence Software’s professional
services, contact us at:

Phone: (919) 854-1800

Email: sales@xvt.com

XVT Customer Support

XVT LICENSE MANAGEMENT
You must have a valid license from Providence Software Solutions
to use the XVT products. XVT products such as the resource
compiler, XVT Design and XVT Architect will not operate.

The XVT license can be either a node-locked license or a floating
license. A node-locked license will permit you to use XVT on the
individual computer you identify. A floating license will allow you
to use a specified number of copies of your XVT product
simultaneously; each individual license is supplied by a designated
license server on your network.

Node-locked licenses

A node-locked license will give access to XVT on a particular
computer, based on its unique computer identification. You first run
xxvii

a utility provided by Providence Software to determine your
computer’s id. Providence uses that id to generate a license file for
your system.

The license file that is provided to you is named XVT.elm and must
be placed in the bin directory under the root or top-most directory of
your XVT installation. An environment variable named
XVT_DSC_DIR or XVT_DSP_DIR must be set to point to the root
of your XVT installation, so that the XVT.elm file can be found by
XVT applications at $XVT_DSC_DIR/bin/XVT.elm or
$XVT_DSP_DIR/bin/XVT.elm.

XVT Portability Toolkit Guide

xxviii

Floating licenses

Floating licenses are available on a local network. The number of
users specified in your contract can connect to the license server
when a license is needed.

A system on your network is designated as the server and runs an
application named LMNetServer. This application checks its own
license file, LMNetServer.elm. This file specifies the number of
simultaneous licenses that can be made available. The
LMNetServer.elm file must be located in the same directory as the
LMNetServer executable is run from.

Users (or clients) of the floating license have an XVT.elm file on
their system that identifies the location of the system with the
LMNetServer license server running.

As with locked licenses, the XVT.elm file placed in the bin directory
under the root or top-most directory of your XVT installation. An
environment variable named XVT_DSC_DIR or XVT_DSP_DIR
must be set to point to the root of your XVT installation, so that the
XVT.elm file can be found by XVT applications at $XVT_DIR/bin/
XVT.elm or $XVT_DSC_DIR/bin/XVT.elm.

Introduction

1
INTRODUCTION TO THE
XVT PORTABILITY TOOLKIT

XVT has implemented the XVT Portability Toolkit™ (PTK) as a
thin layer on top of the native GUI Application Programming
Interface (API). The PTK provides access to native functionality,
without overloading your application’s performance or size. A
layered approach is efficient, native, and open, which allows access
to native features. XVT’s approach gives your customers the native
look-and-feel results they expect.

1.1. The Elements of an XVT Application
1-1

1.1.1. Building Blocks
An XVT-based application usually comprises the following
components:

• Code that defines the GUI components and layout of the
application’s interface

• Code that defines the application behavior of each GUI
component, i.e., how (and when) they respond to events

• Source code modules that implement the functions needed by
individual GUI components

• Additional source modules for the non-GUI parts of the
application

• Text for the application’s help system
• Bitmap images for the help system or other parts of the

application to display

XVT Portability Toolkit Guide

1-2

1.1.2. GUI Objects
A graphical user interface (GUI) has four main types of graphical
objects: windows, dialogs, controls, and menus.

All the GUI objects provided by the XVT Portability Toolkit have
a number of attributes that describe their appearance and behavior.
For example, windows might be sizeable or iconizable, or might
contain scrollbars or titlebars.

See Also: For a comparison of the XVT GUI components, and for information
about attributes that are common to all of them, refer to Chapter 3,
GUI Elements.
For more information on specific GUI object attributes, see Chapters
6, 7, 8, and 9:Windows, Dialogs, Controls, and Menus.

1.1.3. Events and Event Handlers
XVT bases its Portability Toolkit on a set of abstract, portable event
representations. Abstract events deliver user and GUI system event
data to GUI objects within your application.

An event handler is a function with the proper prototype for
receiving events, meaning that it accepts a WINDOW and an EVENT*
as arguments.

Most windows—and all dialogs—must be assigned an event handler
to process the events generated during their lives. The exception is
the screen window, which has no event handler because it receives
no events. Windows can have unique event handlers, or multiple

windows can share a common event handler.

See Also: For more information, see Chapter 4, Events.

1.2. XVT’s Development Solutions
Using either one of XVT’s Development Solutions, you can produce
an extensive graphical application and only write a modest amount
of new code.

Note: This Guide describes the functionality of the XVT Portability
Toolkits, which are implemented in C. As shown in Figure 1.1,
the XVT Portability Toolkits are utilized by both of XVT’s
Development Solutions.

Introduction

Figure 1.1. XVT Portability Toolkits — the foundation of a well-
written, versatile, and maintainable application
1-3

The visual design tool and/or the visual application builder
generates many of the files your application needs. The visual design
tool generates the makefile, various source and header files, and a
resource file. The visual application builder generates both Shell
files and Factory files. The clean separation of code makes it easy for
you to change and maintain your application. Thus, the visual design
tool and the visual application builder are provided to assist you
during the maintenance, as well as the development, of your
applications.

Tip: If your application end users demand strict conformance to native
look-and-feel, you can meet this demand by programming directly
to the native GUI toolkits. For more information about how to
program at this level using XVT products, refer to section 1.3.1.2 on
page 1-5.

XVT Portability Toolkit Guide

1-4

1.2.1. XVT Development Solution for C
XVT Development Solution for C (DSC) is an environment for
writing and maintaining portable, extensible C application
programs. Using XVT Development Solution for C, you can deploy
your C programs to users working with a variety of windowing
systems with a minimum amount of effort on your part. Incidentally,
this Guide, the XVT Portability Toolkit Guide, also functions as the
Guide to XVT Development Solution for C.

1.2.2. XVT Development Solution for C++
XVT Development Solution for C++ (DSC++) contains a robust,
object-oriented application framework designed specifically for
portable C++ GUI development.

This Guide mentions XVT Development Solution for C++ to
complete your view of XVT’s Development Solutions. For more
information about XVT Development Solution for C++, see the
Guide to XVT Development Solution for C++, a separate manual
available from XVT.

1.3. Cross-platform GUI Development

1.3.1. Extensible Programming with XVT
As you develop your portable application, XVT lets you “extend” it
beyond XVT’s Portability Toolkits to native GUI functionality. This

is a practical and powerful aspect of XVT’s programming model,
and something inherently available because of XVT’s layered
architecture.

XVT’s approach to portability supports native look-and-feel and
extensible programming, instead of GUI emulation. This approach
requires developers to consider certain cross-platform issues: bugs
within particular platforms, technical specification inconsistencies,
and native look-and-feel differences.

Tip: To successfully develop XVT-based applications, XVT
recommends that you port frequently in the early design stages.
Also, you should have access to the proper hardware required for
porting to different platforms.

Introduction

1.3.1.1. System Attributes Feature
XVT’s approach to GUI development includes a system attribute
feature, supported by two general purpose functions. Given an
attribute identifier, these functions either set a system attribute to a
new value, or retrieve the current value of the attribute for the
application. XVT supports two sets of attributes:

• Portable attributes (available on all XVT Portability Toolkits)
• Non-portable, platform-specific attributes

The platform-specific attributes found in each XVT Portability
Toolkit let you access native GUI functionality that is not a part of
the XVT portable programming interface.

1.3.1.2. Native Access Functions
In addition to platform-specific system attributes, each platform
has a documented set of access functions that allow you to take
advantage of unique features found in all native GUI systems. These
functions let you interface directly with the native GUI toolkit. The
XVT Portability Toolkits support the following platform-specific
features:

• Native graphics device contexts
• Native window handles and identifiers
• Native event queue access (for manipulating native events)
1-5

• Keyboard translations
• Native fonts
• Custom task window configurability
• Native printing and graphical attribute options

See Also: For more information about system attributes, see section 2.4 in
Chapter 2, About the XVT API.
For more information about specific non-portable attributes, see the
XVT Platform-Specific Books.

1.3.2. Cross-platform Development Process for C
If you are programming with C, developing an XVT-based
application involves following these general steps:

1. Analyze the requirements of your target audience with regard to
such things as performance, locale, communication, equipment,
external databases, functionality, and so forth.

XVT Portability Toolkit Guide

1-6

2. Associate application behavior with GUI components, i.e., how
(and when) objects behind the user interface communicate with
one another.

3. Build source code modules that implement the functions needed
by individual GUI components.

4. Build additional source modules for the non-GUI parts of the
application.

5. Generate text for the application’s help system.

6. Choose bitmap images for the help system or other parts of the
application to display.

7. Write a makefile (whose template you select from the provided
examples for the target compiler and platform).

8. Using the text editor of your choice, write a resource file,
remembering that when programming with XVT, virtually
every aspect of the user interface can be specified using
resources.

9. Compile, link, and execute your application.

Application Files

XVT suggests you organize your C application in the following
manner:
Makefile

An application makefile, using a template appropriate for the

platform/compiler. Alternatively, you can use an IDE project
file. The makefile or project file should link libraries from
XVT’s Portability Toolkit.

Module header and source files
Source (.c) and header (.h) files for the application module (task
window), and for each window, menubar, and dialog in the
project.

XVT Resource Compiler (XRC) file
This file defines the external resources of the project.

The general flow of the cross-platform development process for C is
shown in Figure 1.2. For more details on the development process
for C, refer to the XVT Technical Overview that describes the
Development Solution for C.

Introduction
1-7

Figure 1.2. Important steps of “C” cross-platform development

XVT Portability Toolkit Guide

1-8

1.3.3. Cross-platform Development Process for C++
If you are programming with C++, developing an XVT-based
application using the visual application builder, it involves
following these general steps:

1. Design and lay out your application using the visual application
builder’s Blueprint, Drafting Board, and Strata modules, as well
as its editors.

2. Generate the Shell files, which include a C++ file and a header
file for each application, document, and window class, as well
as a startup file, a XRC file, and a makefile.

3. Generate the project’s object Factory — a set of C++, header,
and resource files that represent what you designed
interactively with the visual application builder.

4. Generate a project file or makefile for your compiler, and add
all necessary files.

5. Run xrc to compile XVT’s XVT Resource Compiler
(XRC) into a native resource file.

6. Modify the generated Shell files to implement the functionality
of your application.

7. From the Shell files, interact with the Factory objects if you
need to manipulate GUI objects at runtime.

8. Compile, link, and execute your application.
Application Files

An XVT C++ application is organized in the following manner:
Shell files

The Shell files include a C++ file and a header file for each
application, document, and window class, as well as a startup
file, a XRC file, and a makefile.

User files
The user files contain the application code that provides the
behavior that is specific to your application.

Factory files
The Factory files contain the object information for your
project. At runtime, your application code uses its Factory files
to instantiate these objects.

Introduction

The general flow of the cross-platform development process for
C++ is shown in Figure 1.3. For more details on the development
process for C++, refer to the Technical Overview for XVT
Development Solution for C++.
1-9

Figure 1.3. Important steps of “C++” cross-platform development

1.4. Getting the Most Out of the PTK
This section introduces you to the XVT Portability Toolkit (PTK)
and to some of the utilities you will use with it: XVT’s XVT
Resource Compiler (XRC), the xrc resource compiler, and the
helpc help text compiler.

This section also briefly mentions how the PTK allows you to
internationalize and localize your applications.

XVT Portability Toolkit Guide

1-10

1.4.1. XVT Portability Toolkits
The XVT Portability Toolkits are platform-specific C language
libraries. As the foundation of XVT’s visual programming model,
they offer a consistent programming interface for all popular
windowing systems.

Each Portability Toolkit implements the XVT interface over native
GUI functionality. This ensures native look-and-feel, low overhead,
interoperability with other applications, and access to native toolkits
when required.

1.4.2. XVT’s XVT Resource Compiler

Resources are specifications for menus, dialogs, windows, bitmap
images, fonts, and strings—they are kept in a small, read-only
database located outside your application’s runtime address space.
Resources do such things as:

• Set object attributes, such as those that determine the size,
position, and alignment of windows, dialogs, and controls

• Establish an object’s default appearance, such as initializing
its label or title, and also controlling whether it is initially
enabled or disabled

• Configure the menubars and menus for application windows

When your application needs a resource, the application requests the
resource by an ID number. XVT or the native window system brings

the resource into memory so it can be accessed. This saves space at
runtime and makes it possible to construct resources without
recompiling your C programs.

Furthermore, externalized strings and graphics allow your
application to be run in more than one locale using localized
resources, if that is a requirement for your organization. XVT
provides pre-translated resources for five languages: Japanese,
Italian, French, German, and English.

Most programmers find the XVT Resource Compiler (XRC)
easy to learn. Since the XRC code is portable, you only need to
define your resources once.

With every Portability Toolkit, XVT supplies a compiler for XRC,
called xrc. You can port your XRC code to any supported XVT
platform and compile it to the native resource format using the XVT

Introduction

compiler, xrc. The xrc compiler reads specifications in the
XVT Resource Compiler and generates specifications in the
format appropriate to the native platform.

See Also: For more information about xrc, see Chapter 5, Resources and
XRC.

1.4.3. XVT’s helpc Help Text Compiler
XVT’s online help feature provides a powerful, flexible, hypertext-
based system for your applications:

• Context-sensitive help — Your XVT-based applications can
provide context-sensitive help to users—in other words, help
relevant to the current context or state.

• Hypertext links — XVT’s help viewer includes hypertext
links from the current context to additional topics. To activate
a hypertext link, the user clicks on highlighted text.

• Glossary links — XVT’s help viewer includes glossary
links, which define a term or phrase. To activate a glossary
link, the user clicks on underlined text.

To create a help system, you establish the context and presentation
of the help system’s links to the application—for example, an
association between a window’s creation and text specific to that
window, or between a button’s operation and another block of text.
1-11

You write help text with an editor, using XVT’s Markup Language.
Then, in the help text file, you specify topics, paragraphs, font
changes, bitmap images, and formatting for the text.

XVT’s helpc compiler reads the text file and creates a binary help
file. Your application then calls either the native or XVT’s Help
Viewer to open a topic window and display the help according to the
program’s context.

See Also: For more information on this important functionality, see Chapter
22, Hypertext Online Help.

XVT Portability Toolkit Guide

1-12

1.4.4. Multibyte Character Set and
Localization Support
XVT includes support for application development for multiple
locales and international languages. All XVT functions, including
text edit object functions,handle multibyte strings. String processing
API functions portably process multibyte strings.

Your XVT application can receive and process keyboard input that
contains international (multibyte) characters. Input Method Editors
(IMEs), provided by the native window systems or operating
systems, can be used to enter composed characters.

Three multibyte codesets are explicitly supported: ASCII, Shift-JIS,
and EUC. Character sets that can be supported must, at least, provide
the invariant character set as a subset.

Note: XVT does not directly support the Unicode character set. An
application can always use this character set by converting to the
proper multibyte codeset when calling the XVT API.

1.4.4.1. Externalized Resource Files
XVT applications can allow the user to select the language/locale of
the user interface at application startup time. The user selects the
resource file used by the application before invoking the application
(DSC++) or before the application calls xvt_app_create (DSC).

All resources are separated from the executable code and can be
selected at application startup time. This mainly affects the PC and

Macintosh platforms, since the Motif platform has always provided
separate resource files. Of course, running any localized application
requires that the appropriate operating system, window system, and
fonts are installed and set up correctly for the selected language and
locale.

XVT has already localized its resources in English, Japanese,
French, German, and Italian. For these languages, XVT provides
localized files containing all of the standard resources used by the
Portability Toolkits. Localized versions of the XVT standard help
topics for each platform are also provided in these languages.

XVT’s XRC compiler, xrc, handles quoted strings containing
multibyte characters, including strings used for the following:

• menu and menu item titles
• window, dialog, and control titles
• edit control and text edit object initial text

Introduction

• font family names
• font mapper native descriptors
• string resources
• user data

Note: XVT can support any left-to-right language. To see a complete list
of supported languages, refer to Appendix A, Languages and
Codesets.

1.4.4.2. More Support for Internationalized Applications
The help compiler, helpc, handles help text containing multibyte
characters. The help viewer, helpview, displays help text containing
multibyte characters.

Furthermore, file and pathnames may contain multibyte characters.
All PTK functions and data types that accept file or pathname strings
are multibyte capable.

The error processor, errscan, produces the error message file
ERRCODES.TXT—you can localize this file for any language.
Furthermore, attributes are provided that allow you to explicitly set
the path to ERRCODES.TXT.
1-13

XVT Portability Toolkit Guide

1-14

About the XVT API

2
ABOUT THE XVT API

XVT’s Portability Toolkit provides an application programming
interface (API) layered on top of and abstracted from native GUIs.
The Portability Toolkit’s API forms the foundation of XVT’s
portable technology.

2.1. The XVT Normalized API Naming Convention
To make your coding easier, XVT uses the following normalized
naming convention for its API functions:

xvt_object_operation_qualifier

where each portion of the name has this significance:
xvt_
2-1

Unique XVT prefix to prevent API naming conflicts.
object

Name of object or subsystem upon which the API function
operates (e.g., font, image, win).

operation
Operation that is performed (e.g., get, create, draw).

qualifier
Optional qualification used to further specify the operation
(e.g., win, font_size, image).

XVT Portability Toolkit Guide

2-2

2.2. Objects, Inheritance, and Polymorphism
XVT organizes its normalized API (NAPI) around “objects.”
An object is an abstraction of user interface components (such as
windows) or supporting facilities (such as the file system). The API
is a collection of functions that operate on these objects.

2.2.1. Objects
XVT has identified the following “objects” and functional
groupings:

Object: Prefix: Explanation:

Appl xvt_app Application object (global
executable context)

Clipbrd xvt_cb Clipboard
Control xvt_ctl Functionality specific

to controls
(contrary to windows)

Container Extension xvt_cxo Container extension objects
Debug xvt_debug Debugging facility
Dialog xvt_dlg User-written dialog support
DlgMgr xvt_dm Dialog manager, controlling

built-in dialogs
Drawable xvt_dwin Object supporting drawing

operations (windows and
pixmaps)
ErrorId xvt_errid Error message identifier
Error xvt_errmsg Error handling facility
Events xvt_event Event access
FontMap xvt_fmap Font mapper facility
Font xvt_font Font object
FileSys xvt_fsys File system under the

application
GblMem xvt_gmem Global (Mac relocatable)

memory management
Help xvt_help Help system
Image xvt_image Image object
I/Ostream xvt_iostr Input/Output byte stream
List xvt_list List box, list edit
Mem xvt_mem Memory allocation facility
Menu xvt_menu Application menu components
Palette xvt_palet Color palette object
Picture xvt_pict Picture object

About the XVT API

Pixmap xvt_pmap Pixmap object
Print xvt_print Printing context
Rect xvt_rect Rectangle object
ResMgr xvt_res Resource manager
Screen xvt_scr Screen object
Scrollbar xvt_sbar Scrollbar object
Slist xvt_slist List of tagged strings
String xvt_str String operations
Timer xvt_timer Timer object
Text xvt_tx Portable, XVT look-and-feel

text object
VisObj xvt_vobj Visible object (windows,

dialogs, and controls)
Window xvt_win Visible window object-specific

functionality

In most cases, the first argument to an API function consists of a
handle identifying an object instance, like this:

xvt_win_get_cursor(window);

That argument is missing only for objects that always have just a
single instance for each XVT application, like this:

xvt_fsys_set_dir_startup(void);

2.2.2. Inheritance and Polymorphism
2-3

Often the same operation can be performed on different objects.
For example, you can set visibility on both windows and controls.
Providing a separate call for the operation on each object would
produce an unacceptably large API. Instead, XVT makes the API
more efficient by using two concepts: inheritance and
polymorphism.

Inheritance means that a function that applies to multiple objects is
introduced by one object, then inherited by (i.e., applied to) other,
more specialized ones. Since many XVT GUI objects are a
specialization of a “visible object” (vobj), some key API
functionality is defined by vobj, then inherited by windows (win),
controls (ctl), drawable windows (dwin), and pixmaps (pmap).

A vobj function such as xvt_vobj_destroy applies to all visible objects.
As a result, no separate function is required for destroying a control.
Because it applies to multiple objects, a function such as
xvt_vobj_destroy is called polymorphic.

XVT Portability Toolkit Guide

2-4

To use polymorphic functions properly, you must understand how
inheritance works. A function defined for one object applies to all
objects inheriting from it, unless XVT specifies otherwise. The tree
shown in Figure 2.1 defines the object inheritance for the XVT API.

Figure 2.1. Object Inheritance within the XVT API

As you can see from Figure 2.1, xvt_sbar inherits the functionality of
xvt_ctl and xvt_vobj, but does not inherit the functionality of xvt_dwin,
which lies in a different branch of the tree.

Object specialization can also be restrictive, as indicated by the
broken line between xvt_dwin and xvt_pmap. xvt_pmap inherits all of the
drawing functionality of xvt_dwin. However, xvt_pmap does not inherit
all parts of xvt_dwin’s functionality. That is, xvt_pmap does not have an
event handler and does not allow picture creation.

See Also: For complete information about all elements of the XVT API, see
the XVT Portability Toolkit Reference.

xvt_vobj

xvt_win
xvt_dwin

xvt_pmapxvt_ctl
xvt_sbar
2.3. Invoking XVT
Like other C programs, an XVT application starts with main.
This allows you to specify command line arguments. You can
also perform initialization unrelated to the GUI portion of your
application, such as opening data files or establishing a network
connection. Within main, you’ll initialize the XVT library.

Tip: To initialize the XVT library:

Assign values to the XVT_CONFIG structure fields.

About the XVT API

This is the XVT_CONFIG structure and its fields:
typedef struct {

short menu_bar_ID;
short about_box_ID;
char *base_appl_name;
char *appl_name;
char *taskwin_title;

} XVT_CONFIG;

 menu_bar_ID
Stores the application’s default menubar resource ID, which
must be a valid XRC-based resource.

about_box_ID
Stores the application’s default About box resource ID, which
must be a valid XRC-based resource. A value of zero indicates
that XVT should use the default system About box.

 base_appl_name
Stores the application’s base name. XVT uses this name when
searching for help files, resource files, and so on.

 appl_name
Stores the application name used in the hyphenated window
title required by some systems. This member can be overridden
by setting the ATTR_APPL_NAME_RID attribute.

 taskwin_title
Specifies a name for the task window. This lets you provide
a longer, more descriptive title, whereas the application name
2-5

usually has character and length restrictions. This member can
be overridden by setting the ATTR_TASKWIN_TITLE_RID
attribute.

To ensure that all values are in a default state, your application
should initialize the XVT_CONFIG structure to zero before using it.
However, you must still specify all fields except the about_box_ID
field.

After you initialize XVT_CONFIG, the main function invokes XVT by
calling xvt_app_create. The xvt_app_create function does not return. After
it is called, the application responds only to user actions by means of
event-handling code.

See Also: For more information on event-handling code, see Chapter 4,
Events.

XVT Portability Toolkit Guide

2-6

2.4. System Attributes
XVT provides two functions for setting and retrieving system
attributes. Given an attribute identifier, these functions either set a
system attribute to a new value, or retrieve the current value of the
attribute for the application:

• xvt_vobj_set_attr

• xvt_vobj_get_attr

Both functions use a long integer. The xvt_vobj_get_attr value always
returns a long, which you should cast to the appropriate type.
Likewise, xvt_vobj_set_attr requires a long argument, which is usually
another data type cast to long in the argument list.

XVT supports two sets of attributes:
Portable attributes

Available on all XVT Portability Toolkits; includes system and
window-specific attributes.

Platform-specific attributes
Provided in each XVT Toolkit to provide access to native GUI
functionality not part of the XVT portable programming
interface.

Example: The following code shows how an XVT application program would
retrieve the screen dimensions and replace the default fatal error
handler with its own function:
long XVT_CALLCONV1 task_event_handler(WINDOW win,
EVENT *ep)
{

int screen_height, screen_width;

switch (event_p->type) {
case E_CREATE:

screen_height = (int)xvt_vobj_get_attr(NULL_WIN,
ATTR_SCREEN_HEIGHT);

screen_width = (int)xvt_vobj_get_attr(NULL_WIN,
ATTR_SCREEN_WIDTH);

xvt_vobj_set_attr(NULL_WIN,
ATTR_ERRMSG_HANDLER,
(long)my_handler);

break;
}

} return (0L);

You can set or get several attributes before the call to xvt_app_create.

See Also: For more information about portable attributes, see the “Portable
Attributes” portion of the XVT Portability Toolkit Reference.

About the XVT API

For information about portable attributes that have been added or
modified to support the ability to write internationalized XVT
applications, see section 19.2.2 on page 19-22.
For information about individual non-portable attributes, see the
XVT Platform-Specific Books.

2.5. Function Calling Convention Macro
The XVT Portability Toolkit contains one macro that defines
function calling conventions: XVT_CALLCONV1. The macro’s
effect differs according to platform:

• On the XVT/Win32 platform, it defines the linkage
convention of functions

• On XVT/Mac, it defines a C calling convention for linkage
between C and C++ compiler-generated code

• On other platforms, it is defined as an empty macro

Use XVT_CALLCONV1 in all prototypes and headers for XVT
callback functions (including event handlers and hook functions).
Also use the XVT_CALLCONV1 macro in the declaration of the main
function.

Tip: XVT recommends using this macro wherever possible. Although
using it is not absolutely required, XVT includes it to ensure
portability. You should definitely use XVT_CALLCONV1 in the
following situations:
2-7

• If you are not using the recommended calling convention
• If the compiler (such as a C++ compiler) sets the calling

convention differently than the XVT libraries were compiled
and linked

Example: You should declare a callback function prototype like this:
BOOLEAN XVT_CALLCONV1 key_hook(...)

You should declare the main function like this:
int XVT_CALLCONV1 main(int argc, char **argv);

XVT Portability Toolkit Guide

2-8

2.6. Symbols for Conditional Compilation
Portions of your source code can depend on the window system or
file system used for compiling and running your application. For
example, code specific to one window system could take advantage
of a particular feature of that system.

When you #include the xvt.h file, the XVT header files xvt_env.h and
xvt_plat.h are included in your program. These two files define a
number of compiler symbolic constants. At compile time, you can
test these symbols with the usual preprocessor conditional operators,
such as #if, ==, &&, and #endif. By using these operators to delimit the
non-portable sections of your source code, you can make the
preprocessor include or omit the sections appropriately, based on the
value of the symbols at compile time.

The file xvt_env.h defines values for these symbols. Fingering or
setting the values takes place in the file xvt_plat.h, specific to each
platform.

About the XVT API

2.6.1. Window System Symbols
Tip: To determine the window system on which you are compiling:

Test the symbol XVTWS for equality to the following symbols:

Symbol: Window System:

MACWS Macintosh
MTFWS Motif
WIN32WS Windows 32 platforms

Example: The following code tests for MS-Windows (Win32):
#if XVTWS == WIN32WS

/* MS-Windows (32-bit) specific code */
#endif

2.6.2. File System Symbols
The following symbols define whether or not a particular file system
is supported:

Symbol: File System:

XVT_FILESYS_HPFS High Performance
XVT_FILESYS_MAC Apple Macintosh
XVT_FILESYS_NTFS Windows XP. Vista (Win 32/64)
2-9

XVT_FILESYS_UNIX UNIX

Set these values to TRUE or FALSE. At least one must be TRUE;
however, you can set more than one to TRUE since some operating
systems can support more than one file system.

Example: The following code tests for UNIX-like filenames:
#if (XV T_FILESYS_UNIX)

/* UNIX-specific file system code */
#endif

2.6.3. Operating System Symbols
Tip: To determine the operating system being used:

Test the symbol XVT_OS.

The xvt_env.h file defines the current values of these constants,
which you can use to test the value of this symbol. XVT_OS has the
same value as one of these constants.

XVT Portability Toolkit Guide

2-10

Caution: Although you can use the XVT_OS macro to determine the file system
or the window system, XVT strongly encourages you to use the
XVTWS and XVT_FILESYS_* macros. They provide a more consistent
and simpler way to determine file systems and window systems.
Also, the supported values of the XVT_OS macro are subject to
change between releases of XVT as support for various operating
systems is added or removed.

2.6.3.1. Operating System Feature Symbols
Tip: To check for specific operating system features:

Test the following constants:

XVT_OS_BSD_SIGNALS
Defined to TRUE if the operating system has BSD-style signal
handling.

XVT_OS_BSD_TIMERS
Defined to TRUE if the operating system has BSD-style timers.

XVT_OS_BSD_DIR
Defined to TRUE if the operating system has BSD-style
directory headers.

XVT_OS_BSD_GETWD
Defined to TRUE if the operating system has a BSD-style getwd
call.

XVT_OS_SYSV_SIGNALS
Defined to TRUE if the operating system has SYSV-style
signal handling.
XVT_OS_SYSV_TIMERS
Defined to TRUE if the operating system has SYSV-style timers.

XVT_OS_SYSV_DIR
Defined to TRUE if the operating system has SYSV-style
directory headers.

XVT_OS_SYSV_GETCWD
Defined to TRUE if the operating system has a SYSV-style
getcwd call.

XVT_OS_ISUNIX
Defined to TRUE if the operating system is a UNIX (V7 or later)
operating system, FALSE otherwise. In particular, you can
depend on select being available if this is defined.

XVT_OS_IS_SUNOS
Defined to TRUE if the operating system is any version of
SunOS.

About the XVT API

XVT_OS_IS_MACOS
Defined to TRUE if the operating system is a Macintosh
operating system.

XVT_OS_IS_WINOS
Defined to TRUE if the operating system is any version of
MS-Windows.
2-11

XVT Portability Toolkit Guide

2-12

2.6.4. Compiler Symbols
The symbol XVT_CC indicates the compiler being used.

Note: The supported values of the XVT_CC macro are subject to change
between releases of XVT as support for various compilers is added
or removed.

See Also: For information about compilers supported for each XVT Portability
Toolkit, see the XVT Platform-Specific Books and readme files for
your particular platform.
To see a list of the currently defined compiler macros, see the
xvt_env.h file.

2.6.4.1. Compiler Feature Symbols
The xvt_env.h file also defines a number of symbols that describe
the features of the compiler in use.
XVT_CC_ISANSI

Defined to TRUE if the compiler can handle ANSI C, FALSE if
not. This macro is not equivalent to __STDC__. Many compilers
only define __STDC__ to be 1 when they are in “strict ANSI”
mode. This means that they support prototypes; stdarg.h; the
keywords const, volatile, and signed; and (void*) pointers.

XVT_CC_PLUS
Defined to TRUE if the compiler is a C++ compiler, FALSE if not.
Note that there are several different types of C++, and this file
does not try to classify them further. This macro is defined only
if the C++ compiler is not a proper superset of C (i.e., it requires

#extern or something to compile C).

XVT_CC_PROTO
Defined to TRUE if prototypes can be used, FALSE otherwise.

About the XVT API

This macro compiles function prototypes conditionally, like
this:

#if XVT_CC_PROTO
extern void foo(int bar, float baz);
#else
extern void foo(bar, baz);
#endif
:
:
void
#if XVT_CC_PROTO
foo(int bar, float baz)
#else
foo(bar, baz)
int bar;
float baz;
#endif
{

/* body of function foo */
}

If you use this style, you can maintain consistency between the
declarations by using a prototyping compiler (for ANSI) followed
by lint (for K&R). Alternatively, you can use the following
prototype construction macros:

extern void foo XVT_CC_ARGS((int bar, float baz));
:
:

void foo XVT_CC_ARGL((bar, baz))
XVT_CC_ARG(int, bar)
XVT_CC_LARG(float, baz)
{

2-13

/* body of function foo */
}

Note: Functions with no arguments are declared and defined like this:
extern void foo XVT_CC_NOARGS()
:
:
void foo XVT_CC_NOARGS()
{

/* body of foo */
}

Caution: XVT explicitly does not recommend using FPROTO (a separate
switch for function and declaration prototypes.) An ANSI compiler
can legally throw out a prototype if it encounters a K&R-style
definition for the same function.

XVT Portability Toolkit Guide

2-14

2.6.4.2. Compile Time Optimization of XVT Applications
The XVT Portability Toolkit is implemented in two layers. The top
API layer is called directly by the application. This layer performs
error checking of all input parameters and sometimes other
validation before calling the internal layer, which contains the
implementation of the functionality.

XVT provides a compile time symbol, XVT_OPT, that generates
additional optimization of the XVT Portability Toolkit. When this
symbol is defined during compilation of your application files, XVT
redefines the top level function names to directly call the internal
API functions through macros. This bypasses the parameter
checking provided by the top layer and eliminates an extra stack
level for each XVT API function. This optimization does not
eliminate all error checking from the XVT Portability Toolkit, only
those errors related to XVT API function parameters. Also, because
the top layer sets up the error frames for function information, any
errors that do occur may have fictitious results for the function stack
trace.

XVT recommends that this option only be used after you have
completed development and have thoroughly tested your
application. Attempting to use this option too early in your
development process may result in application crashes and other odd
behavior, due to improperly called functions, that would otherwise
have been checked and diagnosed by the top API layer.

See Also: For detailed information about how to use the XVT_OPT symbol with
your particular compiler, refer to the XVT Platform-Specific Books.

GUI Elements

3
GUI ELEMENTS

This chapter introduces the basic graphical elements of GUI
applications: windows, dialogs, controls, and menus. It discusses
common data structures and events for these GUI objects and
suggests techniques for dealing with them.

See Also: The chapters in the second section of this guide, Windows, Dialogs,
Controls, and Menus discuss details specific to each particular GUI
object.

3.1. GUI Object Definitions
Window

A user-interface object that presents information and lets the
user interact with that information.
3-1

Dialog
A special type of window that contains controls. These controls
display and gather additional information. Dialogs cannot
contain graphics.

Container Object
Windows and dialogs are commonly referred to as “container”
objects, because they serve as containers for the pictures,
controls, and text of the application. Container objects enable
such GUI objects to be moved and managed as collections.

Control
A standard user-interface object, such as a button, box, or edit
control. Controls are placed in windows or dialogs to gather
user input or display information.

Menu
A list of commands that the user can issue to the application.
A menubar is associated with a window. A menubar and drop-
down menus provide many easily available options for

XVT Portability Toolkit Guide

3-2

controlling operations within the application, in a minimum
amount of screen space.

3.2. Comparison of Dialogs and Windows
Dialogs are really specialized windows, designed to handle a
specific task: presenting controls to the application user for selection
and manipulation. However, XVT lets you place controls in
windows as well. You might do this if your application has special
needs, for example, putting graphics primitives and controls in the
same container.

Table 3.1 compares dialogs and windows. The table demonstrates
that most XVT functions that work with windows also work with
dialogs in a consistent way.

GUI Elements

Functionality Dialogs Windows
Event handlers Yes Yes

Events Do not receive the
following XVT events:
E_UPDATE,
E_MOUSE_*,
E_*SCROLL,
E_COMMAND,
E_QUIT, E_FONT

Receive all XVT events
(except for E_QUIT, which
only the task window
receives)

Coordinate systems Relative to the client
area of the dialog,
starting at (0, 0)

Relative to the client area of
the window, starting at (0, 0)

Drawing graphics
primitives and text

Not available Supported

Menus Not available Supported for all windows
types except modal windows

Modality Modal dialogs support
the native GUI
system’s rules for
modal dialogs;
modeless dialogs may
also show some
platform-specific
behavior

Modal windows support the
native GUI system’s rules
for modal dialogs

Automatic traversal Supported by the native Supported programmatically
3-3

Table 3.1. Comparison of dialogs and windows

between controls GUI system’s dialog
manager

User resize and/or
move

Only move is
supported, and only if
the native GUI system
supports user dialog
moves

Fully supported if the
window is created allowing
moving and resizing

Decorations Titlebars and close
boxes are the only
decorations that
dialogs can possess,
and on some native
GUI platforms, some
dialogs may not even
have titlebars. These
decorations are not
optional.

On most window types,
titlebars, border type,
window border scrollbars,
close boxes, and resize
controls are supported and
are optional. Modal windows
allow only the decorations of
the native system’s modal
dialogs.

XVT Portability Toolkit Guide

3-4

3.3. Creating, Initializing, and Terminating
GUI Objects

This section describes how to create, initialize, and terminate several
types of GUI objects: resource-based, structure-based, and dynamic.

3.3.1. Resource-based GUI Objects
You can specify the following GUI objects as resources: windows,
dialogs, controls, and menus. To create a resource-based object, you
specify the object’s definition in XVT’s XVT Resource Compiler
 (XRC). The application then accesses it at runtime by
means of the object’s resource ID.

You can create resource-based objects in XVT-Design. To each
object, XVT-Design assigns a symbolic identifier, which corresponds
to a resource ID. Functions can access the object by its symbolic
identifier. XVT-Design places symbolic identifier definitions for all
GUI objects into the application module’s header file. (By default this
has the same name as the project.) XVT-Design also creates the
XRC file with references to the identifiers (resource IDs) defined in
the header file.

XRC definitions are external to your application and are used by
window creation functions. Two functions, xvt_win_create_res and
xvt_dlg_create_res, create window or dialog container objects, along

γ

with any controls.

GUI Elements

3.3.1.1. Windows, Dialogs, and Controls
Resource-based windows and dialogs are useful when their
definition is unknown or is changeable at compilation time.

In XRC, dialogs and windows are defined both in terms of their
own attributes (i.e., resource ID, size, title, modality), and in terms
of the individual controls that they contain. You can also define
optional arbitrary data (USERDATA) for the window or dialog. The
xvt_res_get_win_data or xvt_res_get_dlg_data functions
can then retrieve this USERDATA.

Example: The following XRC and C code creates a window using resources
(WINDOW_1 is this window’s resource ID):

/* XRC code to define WINDOW_1 */

WINDOW WINDOW_1 100 100 300 300 "A Sample Window" doc size
MENU_100 USERDATA "string1", "string2"
...

/* Now the C code to create a window that is
defined in XRC */

xvt_win_create_res(WINDOW_1, TASK_WIN, EM_ALL,
a_window_eh, 0L);

Example: This XRC code defines a modeless dialog with one push button
control:

#define OUR_DIALOG_ID 1000
...
3-5

DIALOG OUR_DIALOG_ID, 100, 100, 300, 200 "Sample Modeless Dialog"
MODELESS USERDATA "string1", "string2"

BUTTON DLG_OK, 50, 50, 100, 30 "OK" DEFAULT
...

Example: This XRC code defines a modal dialog with one push button control:
#define OUR_DIALOG_ID 1000
...
DIALOG OUR_DIALOG_ID, 100, 100, 300, 200 "Sample Modeless Dialog"
MODAL USERDATA "string1", "string2"

BUTTON DLG_OK, 50, 50, 100, 30 "OK" DEFAULT
...

Note: DLG_OK is a pre-defined control ID for the OK push button. (You
must use this label to ensure portability.)

After you place the dialog defined above into the application’s XRC
file, you call xvt_dlg_create_res to invoke the dialog:

xvt_dlg_create_res(WD_MODELESS, OUR_DIALOG_ID,
EM_ALL, a_dialog_eh, 0L);

XVT Portability Toolkit Guide

3-6

Or, once the resource-based dialog definition exists, you could
convert the definition into in-memory WIN_DEF data structures.
You modify it if needed, and call xvt_dlg_create_def to create the
dialog. The xvt_res_free_win_def function then frees the
WIN_DEF array.

WIN_DEF *win_def_p;
...
win_def_p = xvt_res_get_dialog (OUR_DIALOG_ID);

/* Change the dialog from modeless to modal */

win_def_p->wtype = WD_MODAL;

xvt_dlg_create_def(win_def_p, EM_ALL, a_dialog_eh,
0L);

xvt_res_free_win_def(win_def_p);
...

3.3.1.2. Menus
Usually, both the XRC file and the program refer to each item in a
menu by means of constants.

Example: The code below shows a hierarchical menu structure as it would be
defined in the XRC file:

MENUBAR 1000

MENU 1000 USERDATA "string1", "string2"
SUBMENU 2000 "Options"
SUBMENU 3000 "Attributes"

MENU 2000
ITEM 2001 "Option #1" checkable checked

ITEM 2002 "Option #2" disabled
ITEM 2003 "Option #3"
SEPARATOR
ITEM 2004 "Last Option"

MENU 3000
ITEM 3001 "Attribute #1"
ITEM 3002 "Attribute #2" disabled
SUBMENU 4000 "Nested Menu"
SEPARATOR
ITEM 3004 "Last Attribute"

MENU 4000
ITEM 4001 "Item #1"
ITEM 4002 "Item #2" disabled
...

This example defines a menubar with two submenus, each
containing additional items. You can see these features in the XRC
code:

• It defines a MENUBAR and gives it an ID of 1000.

GUI Elements

• It defines a MENU, with the same ID as the MENUBAR. This
tells xrc that this is the beginning of the actual MENUBAR
definition. The SUBMENU references under MENU 1000 refer to
subsidiary menus.

• MENU 2000 and MENU 3000 are subsidiary to MENU 1000. Each
contains four candidate selection items, with the fourth item
separated from the other three by a separator (platform-
specific, but usually a separator appears as a dashed line).

• MENU 3000 has a a SUBMENU defined. This is an example of
hierarchical menu definition: MENU 4000 is a child menu
of MENU 3000, which is in turn a child of MENU 1000 (the
menubar).

See Also: For more information about menus, including pop-up menus, see
Chapter 9, Menus.
For details on xvt_res_get_menu_data, see the XVT Portability Toolkit
Reference.

3.3.2. Structure-based GUI Objects
Structure-based GUI objects are created using an array of
WIN_DEF data structures that is passed to xvt_win_create_def
(for windows), xvt_dlg_create_def (for dialogs), or xvt_ctl_create_def (for
controls).

WIN_DEF Data Structure
3-7

You initialize the contents of the WIN_DEF in two ways:
• Call xvt_res_get_win_def or xvt_res_get_dlg_def to generate an

array of structures from resources
• Allocate an array of structures, initialize structure fields to

zero, and assign values to the fields

In either case, the array of WIN_DEF structures contains information
for creating windows or dialogs and their controls.

XVT Portability Toolkit Guide

3-8

The following code shows the WIN_DEF structure:
typedef struct s_win_def {

WIN_TYPE wtype; /* window type */
RCT rct; /* creation rectangle */
char *text; /* object title */
UNIT_TYPE units; /* coordinate units */
XVT_COLOR_COMPONENT *ctlcolors; /* control colors */
union {

struct s_win_def_win { /* Windows*/
short int menu_rid; /* menu resource ID */
MENU_ITEM *menu_p; /* menu tree */
long flags; /* WSF_* flags */
XVT_FNTID ctl_font_id; /* all control fonts */

} win;

struct s_win_def_dlg { /* Dialogs */
long flags; /* DLG_FLAG_* values */
XVT_FNTID ctl_font_id; /* all control fonts */

} dlg;

struct s_win_def_ctl { /* Controls */
short int ctrl_id;
short int icon_id; /* for icons only */
long flags; /* CTL* flags */
XVT_FNTID font_id; /* control font */

} ctl;

struct s_win_def_tx { /* Text Edit */
unsigned short attrib; /* TX_* flags */
XVT_FNTID font_id; /* text edit font */
short int margin;
short int limit;
short int tx_id;

} tx;

} v;

} WIN_DEF;

The first element of a WIN_DEF array describes the container window
or dialog. Subsequent array elements describe controls or text edit
objects. The last element terminates the WIN_DEF array with an
element whose wtype is W_NONE.

xvt_res_free_win_def should be called by your application to free array
memory. (xvt_res_free_win_def automatically frees WIN_DEF structure
font IDs, arrays of control component colors, text strings, and any
MENU_ITEM arrays that are defined for the menu_p menu pointer in the
win substructure in the first array element.)

GUI Elements

Example: This example creates a window using data from a WIN_DEF array
initialized in application code:

WIN_DEF win_def_array[10];

static XVT_COLOR_COMPONENT win_colors[] = {
{XVT_COLOR_FOREGROUND, COLOR_BLACK},
{XVT_COLOR_BLEND, COLOR_WHITE},
{XVT_COLOR_BACKGROUND, COLOR_BLUE},
{XVT_COLOR_NULL, 0}};

static XVT_COLOR_COMPONENT ok_colors[] = {
{XVT_COLOR_FOREGROUND, COLOR_GREEN},
{XVT_COLOR_BACKGROUND, COLOR_BLACK},
{XVT_COLOR_NULL, 0}};

XVT_FNTID button_font = xvt_font_create();
...

/* initialze WIN_DEF array */
memset((char *)win_def_array, 0, 10*sizeof(WIN_DEF));

/* Document window */
win_def_array[0].wtype = W_DOC
win_def_array[0].rct.top = 100;
win_def_array[0].rct.left = 100;
win_def_array[0].rct.bottom = 300;
win_def_array[0].rct.right = 300;
win_def_array[0].text = "Sample Window";
win_def_array[0].units = U_PIXELS;
win_def_array[0].ctlcolors = win_colors;
win_def_array[0].v.win.menu_rid = MENU_100;
win_def_array[0].v.win.flags = WSF_DECORATED;
win_def_array[0].v.win.ctl_font_id = NULL_FNTID;

/* “OK” button */
win_def_array[1].wtype = WC_PUSHBUTTON;
win_def_array[1].rct.top = 10;
3-9

win_def_array[1].rct.left = 40;
win_def_array[1].rct.bottom = 20;
win_def_array[1].rct.right = 60;
win_def_array[1].text = "~OK";
win_def_array[1].ctlcolors = ok_colors;
win_def_array[1].v.ctl.ctrl_id = DLG_OK;
win_def_array[1].v.ctl.flags = CTL_FLAG_DEFAULT;
win_def_array[1].v.ctl.font_id = button_font;
...

/* end array */

win_def_array[9].wtype = W_NONE;
...
xvt_win_create_def(win_def_array, TASK_WIN, EM_ALL,

a_window_eh, 0L);
...
xvt_font_destroy(button_font);
...

Alternatively, in the following code, xvt_win_create_def initializes the
WIN_DEF array using the resource (XRC) definition
for the window:

WIN_DEF *win_def_p;

XVT Portability Toolkit Guide

3-10

...
win_def_p = xvt_res_get_win_def(WINDOW_1);

xvt_win_create_def(win_def_p, TASK_WIN, EM_ALL,
a_window_eh, 0L);

...
xvt_res_free_win_def(win_def_p);

Window Attribute Flags

XVT defines window attributes as flags that can be logically OR’d
together. The resulting combination is passed to one of the window
creation functions. The following table lists the window-attribute
flags (several of which are platform-specific):

WSF_NONE No flags set
WSF_SIZE Is user-sizeable
WSF_CLOSE Is user-closeable
WSF_HSCROLL Has horizontal scrollbar outside of

the client area
WSF_VSCROLL Has vertical scrollbar outside of

the client area
WSF_DECORATED A convenient combination of WSF_SIZE,

WSF_CLOSE, WSF_HSCROLL, and
WSF_VSCROLL

WSF_INVISIBLE Is initially invisible
WSF_DISABLED Is initially disabled
WSF_ICONIZABLE Is iconizable (XVT/XM only)
WSF_ICONIZED Is initially iconized
WSF_FLOATING Is a floating window
(XVT/Mac only)
WSF_SIZEONLY Lacks border rectangles

(XVT/Mac only)
WSF_NO_MENUBAR Has no menubar of its own (see Note)
WSF_MAXIMIZED Is initially maximized
WSF_DEFER_MODAL Modal status deferred (not processed by

xvt_win_create*)
WSF_PLACE_EXACT Modal window is placed exactly

where specified

Note: WSF_NO_MENUBAR implies that the window has no menubar. You
can use this only with top-level windows; child windows never have
menubars.

GUI Elements

Dialog and Control Flags

To determine the initial state of a dialog, you specify two
XVT flags in the flags field in the dlg substructure:
DLG_FLAG_INVISIBLE, and DLG_FLAG_DISABLED. If you don’t
specify either, the dialog is both visible and enabled at creation time.

Tip: Avoid creating invisible or disabled modal windows and dialogs,
because doing so can lock up your application.

Structure-based controls are created from a WIN_DEF data structure
(of arrays) which is passed to xvt_ctl_create_def, xvt_win_create_def, or
xvt_dlg_create_def.

Example: An array of WIN_DEF objects is used to create a dialog with a single
push button (the third element of the array is the terminating
WIN_DEF structure, with the wtype attribute set to W_NONE):

...
WIN_DEF win_def_array[3];
...
win_def_array [0].wtype = WD_MODELESS;
win_def_array [0].rct.left = 100;
win_def_array[0].rct.top = 100;
win_def_array[0].rct.right = 400;
win_def_arra y[0].rct.bottom = 300;
win_def_array[0].text = "Sample Modeless

Dialog";
win_def_array[0].units = U_PIXELS;
win_def_array [0].v.dlg.flags = 0L;
win_def_array[1].wtype = WC_PUSHBUTTON;
win_def_array[1].rct.left = 50;
3-11

win_def_array[1].rct.top = 50;
win_def_array[1].rct.right = 150;
win_def_array[1].rct.bottom = 80;
win_def_array[1].text = "OK";

win_def_array[1].units = U_PIXELS;
win_def_array [1].v.ctl.ctrl_id = DLG_OK;
win_def_array[1].v.ctl.flags = CTL_FLAG_DEFAULT;

win_def_array[2].wtype = W_NONE;
/* terminator */

...

Once the above WIN_DEF array has been constructed, create the
dialog as follows:

xvt_dlg_create_def(win_def_array, EM_ALL,
a_dialog_eh, 0L);

XVT Portability Toolkit Guide

3-12

3.3.3. Dynamic Windows
Dynamic windows do not require external resource definitions.
Your program can create them at any time.

Tip: To dynamically create windows:
Call xvt_win_create.

Specify all of the window’s attributes (initial size, title text, menu
resource ID, parent WINDOW, attribute flags, event handler, and
application data) as arguments to xvt_win_create.

Example: The following code fragment dynamically creates a W_DOC window:
RCT rect;
...
rect.top = 100;
rect.left = 100;
rect.bottom = 300;
rect.right = 300;
...
xvt_win_create (W_DOC, &rect, "A Sample Window",

MENU_100, TASK_WIN, WSF_DECORATED, EM_ALL,
a_window_eh, 0L);

...

3.3.4. Initializing and Terminating Dialogs and
Windows

3.3.4.1. Initializing After an E_CREATE
In response to E_CREATE events, XVT performs all initialization

operations for windows and dialogs in their event handler functions.
Initialization operations include the following:

• Allocating any window or dialog-specific data structures and
attaching them to the window or dialog with xvt_vobj_set_data

• Initializing the various dialog controls (such as setting default
text fields, control visibility and enabled properties,
populating list boxes, etc.)

• Overriding the resource title and/or rectangle by the
application’s calling xvt_vobj_set_title and xvt_vobj_move in
response to the E_CREATE event

Tip: On some systems, calling xvt_vobj_set_title or
xvt_vobj_move can cause undesirable flashing. Instead, use
xvt_res_get_dlg_def (or xvt_res_get_win_def) with xvt_dlg_create_def (or
xvt_win_create_def) and change the
title and/or rectangle in the WIN_DEF structure between these calls.

GUI Elements

3.3.4.2. Terminating After an E_DESTROY
As mentioned earlier, a window or dialog’s event handler receives
an E_DESTROY event when xvt_vobj_destroy is called.
This is a good time to free the container’s application data (with
xvt_vobj_get_data), and to perform any other cleanup activities before
it is destroyed.

Note: You cannot call xvt_win_get_ctl or xvt_vobj_get_data for
any of the controls in a container during E_DESTROY. This means that
if the controls have application data associated with them, you must
either have pointers to this data in the window or dialog itself, or you
must free the data earlier (for example, during the E_CLOSE or
E_CONTROL event that caused the call to xvt_vobj_destroy).

3.4. Event Handler Functions
All creation functions for windows and dialogs require as a
parameter the name of an event handler function.

XVT-Design automatically defines the event handler function and
supplies its name to the container’s creation function. It also provides
the switch statement template in the event handler and supplies
default code statements within some of the event cases.

The event handler function receives a pointer to an EVENT structure.

γ

3-13

A switch statement generally processes the type field of the EVENT
structure. The type field matches one of the event identifiers shown
in the table of the next section.

See Also: For an example of a dialog’s event handler, see section 3.4.2 on page
3-15.
Also see Chapter 4, Events.

XVT Portability Toolkit Guide

3-14

3.4.1. Handling Window and Dialog Events
The following table provides some information about the XVT
events that are sent to your window’s or dialog’s event handler,
and how to handle them:

XVT Event Sent to
Event Handler

Comments and Suggested Actions to
Perform upon Receiving Event

E_CREATE Perform container initializations, modify
appearance, allocate and attach application data
to container and/or controls, initialize controls.

E_DESTROY Perform cleanup, deallocate application data to
container and/or controls.

E_FOCUS Set or reset control states or contents (although
usually handled by native windowing system).

E_SIZE Modify layout of controls.

E_CLOSE Close the container if it is appropriate.

E_CHAR Received for characters that are not consumed
by controls.
Perform specific action based on the key
pressed.
On some platforms, controls consume character
events. (Portable applications should avoid
processing E_CHAR events in dialogs.)

E_CONTROL Received for all controls manipulated by a user.
E_TIMER Timer went off; perform some time-dependent
action.

E_USER Application-specific; no specific action
recommended.

E_UPDATE Window requires updating. Do any drawing
operations. (Not sent to dialog event handlers.)

E_MOUSE_DOWN,
E_MOUSE_UP,
E_MOUSE_DBL,
E_MOUSE_MOVE

Mouse click or motion. Select items; set or
release mouse trapping; perform rubber-
banding; etc. (Not sent to dialog event handlers.)

E_VSCROLL,
E_HSCROLL

Scrollbar controls operated. Scroll window
contents. (Not sent to dialog event handlers.)

GUI Elements

Table 3.2. Handling XVT events

Event Masking

XVT allows you to block (or “mask”) specific event types from
reaching window or dialog event handlers. To create an event mask,
OR together the desired events (e.g., EM_MOUSE_DOWN |
EM_UPDATE). By default, all XVT events are selected (the EM_ALL
mask).

See Also: For information about event masking, see the “EM_* Constants”
portion of the XVT Portability Toolkit Reference.
Also see Chapter 4, Events.

3.4.2. Event Handling for Controls
When a control-related event is reported, the WINDOW passed to the

E_COMMAND,
E_FONT

Menu item selected or font selection dialog
operated. Respond to menu selection, or call
xvt_dwin_set_font. (Not sent to dialog event
handlers.)

E_QUIT System shutdown. (Not sent on all platforms.
Sent only to task window event handler. Not
sent to dialog or top level window event
handlers.)
3-15

event handler identifies the control’s parent window or dialog, and
the win field in the CONTROL_INFO object is the WINDOW of the
control itself. Similarly, the type field in the CONTROL_INFO object
is the WIN_TYPE of the control itself. (To find the WIN_TYPE of the
parent window or dialog, call xvt_vobj_get_parent, specifying
the parent’s WINDOW.)

XVT-Design automatically creates a switch statement within the
E_CONTROL case of the window or dialog’s event handler. In this
switch statement, it inserts a case for each control contained in the
window or dialog. The following example shows this structure.

γ

XVT Portability Toolkit Guide

3-16

Example: This example shows the event handler for a dialog.
long XVT_CALLCONV1 dlg_101_eh(WINDOW xdWindow,

EVENT *xdEvent)
{

short xdControlId = xdEvent->v.ctl.id;

switch (xdEvent->type) {
...

case E_CONTROL:
/*

User operated control in window.
*/
{

switch(xdControlId) {
case DLG_101_RADIOBUTTON_1: /* "Radio Button 1" */

{
xdCheckRadioButton(xdWindow,

WIN_101_RADIOBUTTON_1,
WIN_101_RADIOBUTTON_1,
WIN_101_RADIOBUTTON_1);

}
break;

case DLG_101_PUSHBUTTON_2: /* "Push Button 2" */
{
}
break;

...
default:

break;
}
}
break;
}
} return (0L);

3.4.3. Event Handling For Menus
The following example shows the structure of a window’s event
handler for E_COMMAND events. Such events are generated when a
user selects a menu item. For each menu item a function designed to
handle that case is called.

XVT-Design inserts a call to a menu event handler function in the
E_COMMAND event of the window (if the window is configured to
have a menubar). The following example shows this structure.

γ

GUI Elements

/* define menu tags */

#define M_OPTION_1 ...
#define M_OPTION_2 ...
#define M_OPTION_3 ...
#define M_OPTION_4 ...

#define M_UTIL_1 ...
#define M_UTIL_2 ...
...
long XVT_CALLCONV1 win_101_eh(WINDOW xdWindow,

EVENT *xdEvent)
{

switch (xdEvent->type) {
...
case E_COMMAND:

{
do_MENU_BAR_2(xdWindow, xdEvent);

}
break;

...
}
return (0L);

}
void do_MENU_BAR_2(WINDOW xdWindow, EVENT *xdEvent)
{

MENU_TAG tag = xdEvent->v.cmd.tag;
...
switch(tag) {
...

case M_OPTION_1:
do_option_1(xdWindow);
break;

case M_OPTION_2:
do_option_2(xdWindow);
break;
3-17

case M_OPTION_3:
do_option_3(xdWindow);
break;

case M_OPTION_4:
do_option_4(xdWindow);
break;

case M_UTIL_1:
do_option_1(xdWindow);
break;

case M_UTIL_2:
do_option_2(xdWindow);
break;

...
}

...
}

XVT Portability Toolkit Guide

3-18

3.5. Functions Common to Multiple GUI Objects
This section discusses some operations common to multiple GUI
objects. Object-specific functions are discussed in the appropriate
chapter (e.g., Chapter 6, Windows).

3.5.1. Determining Parent Windows
Tip: To determine the parent of any window:

Call xvt_vobj_get_parent.

Note: If called on a top-level window, xvt_vobj_get_parent returns TASK_WIN.
It returns SCREEN_WIN as the parent of the task window, and returns
NULL_WIN as the parent of SCREEN_WIN.

3.5.2. Window and Dialog Dimensions
and Coordinates

Tip: To find the dimensions of a GUI object’s client rectangle:
Call xvt_vobj_get_client_rect.

The coordinates returned are relative to the object, so the left and top
coordinates are always zero.

Tip: To find the coordinates and dimensions of the entire GUI object:
Call xvt_vobj_get_outer_rect.
The rectangle includes object decorations, such as titlebars and
scrollbars (for windows).

Tip: To translate coordinates from one container to another:
Call xvt_dwin_translate_points.

3.5.3. Controlling Keyboard Focus
Tip: To explicitly assign keyboard focus to a control, a window, or a

dialog:
Call xvt_scr_set_focus_vobj.

Tip: To determine if a specific GUI object can be assigned
keyboard focus:

Call xvt_vobj_is_focusable.

GUI Elements

For a specified control or child window, this call activates the
containing window hierarchy. The ability to assign focus is a static
property of a visible object and is not affected by its current visibility
or enabled state.

Tip: To find out which object receives keyboard events:
Call xvt_scr_get_focus_topwin.

Tip: To find out which top-level window or dialog is currently active:
Call xvt_scr_get_focus_topwin.

Implementation Note: The result of calling xvt_vobj_is_focusable on the same type of GUI
object may vary between platforms. For example, a pushbutton can
never gain focus under native look-and-feel for Macintosh, but can
on Motif.

3.5.4. Controlling Window Stacking
Tip: To control the stacking of windows:

Call xvt_vobj_raise.

On some platforms, raising a top-level window can activate that
window. Changing the stacking order of controls is not supported.

3.5.5. Setting and Getting Titles
3-19

Windows, dialogs, and some controls have a title, which is set
when they are created.

Tip: To change titles at any time:

 Call xvt_vobj_set_title.

For document windows, the function xvt_win_set_doc_title
is similar, but it ensures that the title obeys appropriate user interface
guidelines for the underlying toolkit.

Tip: To retrieve the title of a GUI object:
Call xvt_vobj_get_title.

XVT Portability Toolkit Guide

3-20

3.5.6. Moving, Resizing, Disabling, and Hiding Objects
Normally, only the application user moves and resizes windows or
dialogs, but you can also do this programmatically. Your application
receives an E_SIZE event when a container is resized, but not when it
is merely moved.

Tip: To move and/or resize a container:

Call xvt_vobj_move.

The rectangle passed to xvt_vobj_move is relative to the client
rectangle of the container window. It is interpreted identically to the
rectangle passed to the window or dialog creation functions.
However, when you query the client rectangle of a window with a
call to xvt_vobj_get_client_rect, the coordinates that are returned are
relative to the top-left corner of the window; that is, the coordinate
returned for the top-left is (0,0).

You can also use xvt_vobj_move to reposition controls within the
container.

Tip: To hide an object without closing it:

Call xvt_vobj_set_visible with a FALSE argument.

Calling the same function with a TRUE argument reveals a hidden
object.

Tip: To toggle the enabled/disabled state of a child window:
Call xvt_vobj_set_enabled.

This function also works on dialogs and controls.

3.5.7. Determining Creation Flags, Handles, and IDs
XVT allows the application to interact directly with any control. The
functions described in this section allow you to ascertain the status
of various XVT PTK GUI components.

3.5.7.1. Obtaining the Creation Flag of a Visible Object
Tip: To determine the current state of creation flags of a visible object

(vobj):
Call xvt_vobj_get_flags.

GUI Elements

This function returns the following types of creation flags:
• WSF_* values for windows
• DLG_FLAG_* values for dialogs
• CTL_FLAG_* values for controls

This function returns the values of the creation flags from their
current state. For example, a window may have been created visible
but may be hidden at a later point in time—the creation flag
WSF_INVISIBLE would then be returned as one of the current creation
flags.

Note: xvt_vobj_get_flags does not work with text edit objects. They do not
have associated XVT WINDOWs and hence are not classified as
visible objects (vobj), per se. The only way to retrieve a text edit's
attributes (similar to creation flags) is to use xvt_tx_get_attr.

3.5.7.2. Obtaining a Control’s Window Handle
Tip: To convert any XVT control ID to a WINDOW:

Call xvt_win_get_ctl.

3.5.7.3. Obtaining a Control’s ID
Tip: To obtain the ID of a given control (by passing its WINDOW handle):

Call xvt_ctl_get_id.
3-21

xvt_ctl_get_id is the opposite of xvt_win_get_ctl because xvt_win_get_ctl
returns a control’s WINDOW handle given the control’s ID.

3.5.8. Destroying GUI Objects
Tip: To destroy a window, dialog, or control:

Call xvt_vobj_destroy.

Tip: To destroy a pixmap:
Call xvt_pmap_destroy.

Destruction of a container results in all of the contained objects
being destroyed as well.

XVT Portability Toolkit Guide

3-22

Events

4
EVENTS

XVT uses an event-driven programming paradigm. In other words,
XVT applications respond to events whose order and timing is
generally unpredictable. In this sense, no one part of an XVT
application is “in control.” Instead, various event-handling
functions within the application process the events as they occur.

Typically, events are generated when users interact with the
application. In some cases, though, the native GUI and/or window
manager can generate events. Other events occur as by-products of
user action.

Each event is delivered to an event handler, accompanied by two
pieces of information: the WINDOW where the event was generated
(or with which it is associated), and a pointer to an EVENT object
4-1

(synthesized and allocated by XVT) that contains information about
the event.

See Also: XVT-enforced rules govern the order in which some events occur;
for details, see section 4.4.1 on page 4-12.

Figure 4.1 illustrates event flow control for XVT programs.

XVT Portability Toolkit Guide

4-2

Figure 4.1. Control flow for XVT programs

initialize

xvt_app_create

XVT and WS

called by app or

E_CREATE
initialization

internally from
XVT

task event
handler

window 1
event handler

window 2
event handler

window N
event handler

get native
WS event

process

send
event to

app?

Yes

event

dispatch
event

xvt_app_destroy

exit

E_DESTROY

application code XVT code

No.
.

Native Events

The underlying window system on which XVT runs can generate
native GUI system events. XVT either ignores these or handles them
without involving the application. Your application can be notified
when these events occur; however, both the events themselves and
the notification method are non-portable.

See Also: For more information about accessing native events (including
keystrokes) before they are processed by XVT, see section 4.4.3 on
page 4-15.

Events

4.1. Types of Events
This section discusses the types of events that XVT can send to
event handlers, along with the information that accompanies them.
All XVT events fall into one of three categories:

User Interaction Events
E_CLOSE
E_MOUSE_MOVE
E_MOUSE_DOWN
E_MOUSE_UP
E_MOUSE_DBL
E_MOUSE_SCROLL
E_CHAR
E_VSCROLL
E_HSCROLL
E_COMMAND
E_FONT
E_CONTROL

Window Management Events
E_CREATE
E_FOCUS
E_DESTROY
4-3

E_SIZE
E_UPDATE
E_QUIT

Other Events
E_USER
E_TIMER
E_HELP

Three types of event handlers deal with events: task (window) event
handlers, window event handlers, and dialog event handlers. The
XVT task window has a separate handler, because although it is a
WINDOW object, its behavior differs from ordinary windows and
dialogs.

Note: Print windows don’t have event handlers and therefore don’t receive
events.

XVT Portability Toolkit Guide

4-4

The following table summarizes all XVT events, explaining their
significance for each of the three types of event handlers.

XVT Event Task Event
Handler

Window Event
Handler

Dialog Event
Handler

E_CREATE TASK_WIN has been
created; first event
sent to application.

Window has been
created; first event
sent to newly created
window.

Dialog has been
created; first event
sent to newly created
dialog.

E_DESTROY Application is being
terminated; last event
sent to application.

Window has been
closed; last event sent
to window.

Dialog has been
closed; last event sent
to dialog.

E_FOCUS Physical task window
has lost or gained
focus.

Window has lost or
gained focus.

Dialog has lost or
gained focus.

E_SIZE Size of task window
has been set or
changed. Always sent
on application
startup; may be sent
subsequently if task
window is resized by
user or via
xvt_vobj_move.

Size of window has
been set or changed;
sent when window
is created or
subsequently resized
by user or via
xvt_vobj_move.

Size of dialog has
been set or changed;
sent when dialog is
created or
subsequently resized
by xvt_vobj_move.

E_UPDATE Physical task window
requires updating.

Window requires
updating.

Not sent.
E_CLOSE Request to close
(terminate)
application.

Request to close
window; user
operated close menu
item on window
system menu, or
operated close
control on window
frame. Not sent if
Close on File menu is
issued. Window not
closed unless
xvt_vobj_destroy is
called.

Request to close
dialog; user operated
close menu item on
dialog system menu,
or operated close
control on dialog
frame. Dialog not
closed unless
xvt_vobj_destroy is
called.

Events

E_MOUSE_DOW
N
E_MOUSE_UP
E_MOUSE_DBL
E_MOUSE_MOV
E
E_MOUSE_SCRO
LL

Mouse click or
motion.

Mouse click or
motion.

Not sent.

E_CHAR Character typed. (
XVT/Win32 only)

Character typed. On some platforms,
controls consume
character events;
portable applications
should avoid
processing E_CHAR
events in dialogs.

E_VSCROLL
E_HSCROLL

Scrollbar control on
frame operated.

Scrollbar control on
frame operated.

Not sent.

E_COMMAND User selected task
window menu item
command.

User selected
window menu
command.

Not sent.

E_FONT User made a selection
from task window
menubar Font/Style
menu, or Font

User made a selection
from window
menubar Font/Style
menu or Font

Not sent.

XVT Event Task Event
Handler

Window Event
Handler

Dialog Event
Handler
4-5

Selection dialog. Selection dialog.

E_CONTROL User operated control
in task window.

User operated control
in window.

User operated control
in dialog.

E_TIMER Timer associated
with TASK_WIN
went off.

Timer associated
with window went
off.

Timer associated
with dialog went off.

E_QUIT System shutdown.
(Sent only on those
platforms which
provide this
information to XVT)

Not sent. Not sent.

E_USER Application-initiated. Application-initiated. Application-initiated.

XVT Portability Toolkit Guide

4-6

Table 4.1. XVT events summary

See Also: For more information about the task window, refer to section 6.1 on
page 6-2.
For information about attributes that affect the task window, see the
XVT Platform-Specific Books.

4.2. The EVENT Data Structure
XVT uses a common structure for EVENTs to tell an application what
event occurred and, in most cases, to supply additional information
about the event. This structure contains the member type, followed
by a union v, which contains additional members that vary according
to the particular event:

typedef struct {
EVENT_TYPE type;
union {

... /* event-specific substructures */
} v;

} EVENT, *EVENT_PTR;

E_HELP Help has been
requested for the
window, or for an
object or menu within
the window
(XVT/Win32 only).

Help has been
requested for the
window, or for an
object or menu within
the window.

Help has been
requested for the
dialog, or for an
object within the
dialog.

XVT Event Task Event
Handler

Window Event
Handler

Dialog Event
Handler
Typically, you would structure an XVT event handler so that it
branches to specific event-related code depending on the type of
event, like this:

long XVT_CALLCONV1 a_window_eh(WINDOW win,
EVENT *event_p)

{
switch (event_p->type) {
case E_CREATE:

...
case E_DESTROY:

...
}

}

Events

EVENT_TYPE Definition

EVENT_TYPE has the following definition:
typedef enum _event_type {

E_CREATE, /* creation */
E_DESTROY, /* destruction */
E_FOCUS, /* window focus gain/loss */
E_SIZE, /* resize */
E_UPDATE, /* update */
E_CLOSE, /* close window request */
E_MOUSE_DOWN, /* mouse down */
E_MOUSE_UP, /* mouse up */
E_MOUSE_MOVE, /* mouse move */
E_MOUSE_DBL, /* mouse double-click */

E_MOUSE_SCROLL, /* mouse scroll wheel event */
E_CHAR, /* character typed */
E_VSCROLL, /* horz. window scrollbar activity */
E_HSCROLL, /* vert. window scrollbar activity */
E_COMMAND, /* menu command */
E_FONT, /* font menu or dialog selection */
E_CONTROL, /* control activity */
E_TIMER, /* timer */
E_QUIT, /* application shutdown request */
E_HELP, /* help invoked */
E_USER, /* user-defined */

} EVENT_TYPE;

See Also: For details about each event type, see section 4.5 on page 4-16.

4.3. Event Handlers
4-7

When an event occurs, XVT notifies an application by invoking
the application-defined event handler function for the appropriate
window or dialog. XVT passes two arguments to the event handler:

• The WINDOW where the event occurred
• A pointer to an EVENT object, which contains specific

information regarding the event

In XVT, only task windows, regular windows, and dialogs can have
event handlers. Print windows, screen window, and controls cannot
have them.

Each window or dialog in an XVT application must have an
associated event handler function. Information about events that
occur in windows or dialogs is sent to these event handlers, where
the application can determine the type of event and the appropriate
response.

XVT Portability Toolkit Guide

4-8

Example: Here is a sample event handler structure:
long XVT_CALLCONV1 a_window_eh(WINDOW win,

EVENT *event_p)
{

switch (event_p->type) {
case E_CREATE:

/* code to handle window creation event */
break;

case E_DESTROY:
/* code to handle window destruction event */
break;

case FOCUS:
/* code to handle window focus change event */
break;

/* ... and so on for all events relevant to
this window or dialog */

default:
/* ignore other events */
break;

}
return (0L);

}

4.3.1. Sending Events
Tip: To send XVT events directly to window or dialog event handlers:

Call xvt_win_dispatch_event.

These events are not queued. Event handlers return a long value:
0 if successful, or –1 if not successful.

Note: You can send events to event handlers by calling the event

handler directly, but XVT recommends that you use
xvt_win_dispatch_event instead.

In some cases, an event might be automatically passed up a window
hierarchy to the event handler of a parent or task window. For
example, mouse events for a disabled child window will be
translated to its parent window’s coordinates, and sent automatically
to the parent window’s event handler. Except in such cases, though,
automatic event transference doesn’t occur.

However, you can send events to the event handler of any window
(including the parent window of another window) at any time.

Events

4.3.2. Recursive Calls to Event Handlers
An XVT event can occur whenever your application passes control
to XVT, either by calling an XVT function or returning from an
event handler. When window management events (for example,
E_UPDATE or E_FOCUS) occur, an event handler might be called even
if it hasn’t returned from handling a previous event.

As a result, you must design your program to execute recursively.
This isn’t difficult, because most event processing is associated with
user events, which do not cause recursive calls unless
xvt_app_process_pending_events is called, in which case any pending
native events are flushed to event handlers. On the other hand, it is
possible for a window management event, such as E_UPDATE, to
occur during the processing of a user event or other window event.

Tip: XVT recommends that you follow these guidelines for avoiding
recursion problems:
Minimize processing during window management events.

For example, when an update event occurs, update only the
window. When a focus event occurs, adjust the menus if
necessary, but try not to do much else. In particular, don’t do
anything to cause another window management event during
the processing of a window management event. For instance,
don’t set the focus to a window or dialog (with
xvt_scr_set_focus_vobj, xvt_dlg_create_res, or xvt_dm_post_note) during
an update event. To prevent such problems, XVT restricts the
4-9

use of many functions during the processing of an E_UPDATE
event (see section 4.3.3).

Minimize use of global variables.
In particular, avoid modifying the value of a global variable
during the processing of a window management event. For
example, if the global variable window holds the WINDOW
argument to the event handler, you will likely find that your
event processing isn’t re-entrant; as a result, you’ll be in trouble
if the event handler is called recursively. Instead, pass the
WINDOW as an argument to every function called directly or
indirectly from the event handler, and eliminate the global
window.

XVT Portability Toolkit Guide

4-10

Avoid functions that implicitly cause recursive update events.
The functions that commonly cause these problems include the
following:

xvt_app_process_pending_events
xvt_dwin_update
xvt_dm_post_note
xvt_vobj_move
xvt_vobj_destroy
xvt_scr_set_focus_vobj
Any window and dialog creation functions

Note: Since xvt_app_process_pending_events causes recursion as a normal part
of its behavior, all of the above suggestions apply to it.
xvt_app_process_pending_events is most commonly used during
computation-intensive operations that can effectively lock the user
interface. By calling this function frequently during such operations,
an application can continue to handle events normally. While
xvt_app_process_pending_events can slightly delay computations, this is
usually a modest price for ensuring that your application remains
responsive to the user.

See Also: For a list of functions that can cause recursive update events (and
whose use XVT restricts during the processing of E_UPDATE events),
see section 4.3.3, next.

4.3.3. E_UPDATE Restrictions
When called during the processing of an E_UPDATE event, several
XVT functions can cause unwanted recursive behavior within the

event handler. This is usually due to side effects that these functions
cause within the context of an E_UPDATE event. For example, calling
a function that causes an E_UPDATE to be generated from within the
processing of a previous update event can cause endless recursion.

To avoid these problems, XVT restricts use of these functions in the
context of E_UPDATE event processing.

Note: If you absolutely must make one of these calls during an E_UPDATE,
you can use the ATTR_SUPPRESS_UPDATE_CHECK attribute in a call
to xvt_vobj_set_attr. XVT recommends that you not do this unless it is
essential to your application. For details, see the
XVT Portability Toolkit Reference.

Events

Function Calls Illegal During E_UPDATE Event Processing

Under normal circumstances, you cannot make the following
function calls during E_UPDATE event processing. If you call these
functions during an E_UPDATE, XVT issues an error.

xvt_app_process_pending_events
xvt_cb_* (except xvt_cb_has_format)
xvt_ctl_check_radio_button
xvt_ctl_create_def
xvt_ctl_def_dialog
xvt_ctl_def_window
xvt_ctl_res_dialog
xvt_ctl_res_window
xvt_ctl_set_checked
xvt_ctl_set_text_sel
xvt_dm_post_ask
xvt_dm_post_error
xvt_dm_post_file_open
xvt_dm_post_file_save
xvt_dm_post_font_sel
xvt_dm_post_message
xvt_dm_post_note
xvt_dm_post_warning
xvt_dwin_invalidate_rect
xvt_dwin_scroll_rect
xvt_dwin_update
xvt_list_* (not including “querying” functions)
xvt_menu_*
xvt_pmap_destroy
xvt_print_*
4-11

xvt_sbar_set_*
xvt_scr_set_focus_vobj
xvt_tx_add_par
xvt_tx_append
xvt_tx_clear
xvt_tx_create
xvt_tx_create_def
xvt_tx_destroy
xvt_tx_move
xvt_tx_rem_par
xvt_tx_reset
xvt_tx_resume
xvt_tx_scroll_hor
xvt_tx_scroll_vert
xvt_tx_set_*
xvt_tx_suspend
xvt_vobj_destroy
xvt_vobj_move
xvt_vobj_set_enabled
xvt_vobj_set_palet
xvt_vobj_set_title
xvt_vobj_set_visible
xvt_win_create

XVT Portability Toolkit Guide

4-12

xvt_win_set_caret_pos
xvt_win_set_caret_size
xvt_win_set_caret_visible
xvt_win_set_doc_title

Note: Although xvt_dm_post_error and xvt_dm_post_warning appear
in the list above, the error signaled by calling them is posted by the
XVT “last chance” error handler after the completion of the
E_UPDATE event.

4.4. Managing Events
This section discusses some techniques for managing events.
To manage events in your application, you can:

• Anticipate the order in which events are received by
understanding XVT’s event ordering rules

• Prevent some events from reaching event handlers by
masking them

• Access native GUI system events by using XVT-provided
“hook” functions

4.4.1. Event Ordering Rules
XVT enforces certain rules regarding the ordering of events. If you
make no assumptions about event ordering other than those in the
rules below, your applications will be less error-prone, and will port
more quickly.
Note: The rules listed below might not be maintained if an error condition
occurs.

Event Ordering Rules

1. The first event that a window receives is an E_CREATE, and the
last event is an E_DESTROY. XVT guarantees this pair of events
for each window.

2. During the processing of an E_CREATE, any XVT window
operation for that window is valid. If the window was created
initially visible, then the window will be visible at the time of
the E_CREATE. (This also holds true for dialogs.)

3. During the processing of an E_DESTROY, you can’t call any
XVT functions that refer to the WINDOW being destroyed,
except xvt_vobj_get_data.

Events

4. The minimum sequence of events that an application receives
for a new window or dialog is E_CREATE, E_SIZE, E_DESTROY.
On some platforms, performing certain operations during a
window’s E_CREATE (such as creating a dialog) can cause an
E_SIZE event to be delivered to the window before the
completion of the E_CREATE callback. This violates the pairing
of E_CREATE / E_SIZE events. If the application needs the size
of a window during the processing of an E_CREATE, call
xvt_vobj_get_client_rect or xvt_vobj_get_outer_rect. These functions
will return correct values by the time an E_CREATE event is
generated.

5. Applications are guaranteed to receive an E_FOCUS (FALSE) (or
an E_DESTROY), for every E_FOCUS (TRUE).

6. E_CHAR events are only received between E_FOCUS (TRUE) and
E_FOCUS (FALSE) events.

7. A mouse double-click is represented like this: E_MOUSE_DOWN,
E_MOUSE_UP, E_MOUSE_DBL, E_MOUSE_UP. Under some
conditions, the final E_MOUSE_UP may not be delivered if the
mouse has moved outside the window before being released.

8. When window resizing operations cause an E_UPDATE, the
E_SIZE is always sent to the application before the E_UPDATE.

9. The TASK_WIN has identical event semantics to other windows,
with the E_QUIT event added. E_QUIT can be received any time
4-13

after the E_SIZE event is received.

10. Dialog event handlers do not receive the following events:
E_COMMAND, E_FONT, E_MOUSE_*, E_QUIT, E_*SCROLL, and
E_UPDATE.

11. Dialog event handlers can receive the following events:
E_CHAR, E_CONTROL, E_CLOSE, E_CREATE, E_DESTROY,
E_FOCUS, E_HELP, E_SIZE, E_TIMER, and E_USER.

Note: Event ordering rules for E_CREATE, E_DESTROY, and E_FOCUS events
are identical for dialogs and for windows. Aside from the above
rules, no ordering of events is defined or guaranteed.

XVT Portability Toolkit Guide

4-14

4.4.2. Event Masking
XVT allows you to block (or “mask”) certain event types from
reaching window or dialog event handlers. At a minimum, XVT
ensures that these event types do not reach the event handler.
For some types, on some platforms, XVT masks at the level of the
native GUI system, so that these event types are never generated.

The following two XVT functions support event masking:
• xvt_win_set_event_mask

Sets an event mask for a specified window or dialog.
• xvt_win_get_event_mask

Gets the current event mask for a specified window or dialog.

Additionally, XVT provides the following set of constants to
represent masks for each XVT event type:

#define EM_NONE ...
#define EM_ALL ...
#define EM_CREATE ...
#define EM_DESTROY ...
#define EM_FOCUS ...
#define EM_SIZE ...
#define EM_UPDATE ...
#define EM_CLOSE ...
#define EM_MOUSE_DOWN ...
#define EM_MOUSE_UP ...
#define EM_MOUSE_MOVE ...
#define EM_MOUSE_DBL ...
#define EM_MOUSE_SCROLL ...
#define EM_CHAR ...

#define EM_VSCROLL ...
#define EM_HSCROLL ...
#define EM_COMMAND ...
#define EM_FONT ...
#define EM_CONTROL ...
#define EM_TIMER ...
#define EM_QUIT ...
#define EM_HELP ...
#define EM_USER ...

EM_NONE means that no events are sent to the event handler;
EM_ALL means that all events are sent to the event handler. EM_ALL
is the default constant.

Event mask constants are defined so that they can be easily
OR’d together when specified as the mask argument to
xvt_win_set_event_mask. Perhaps the easiest way to understand event
masking is to remember that you specify the events that you want the
event handler to receive.

Events

Example: If you wanted to mask all E_MOUSE_MOVE and E_CHAR events from
a window’s event handler, you would call xvt_win_set_event_mask like
this:

xvt_win_set_event_mask(my_win, ~(EM_MOUSE_MOVE | EM_CHAR));

Some XVT platforms can mask certain events at the native GUI
system level. For example, the result of masking mouse move events
at the server level under X-based XVT platforms is that these events
never reach the client application, and client-server network traffic
is greatly reduced.

4.4.3. Defining Event and Keyboard Hooks
XVT provides functions for accessing native GUI system events
(including keystrokes) before they are processed by XVT. These
“hook” functions let you examine, modify, reroute, or even discard
such events. Each function is platform-dependent, because the
events it processes are platform-specific.

XVT provides source code for the keyboard hook functions on each
XVT platform. There is no default event hook function.

Tip: To specify replacement hook functions to XVT:
Call xvt_vobj_set_attr, with ATTR_EVENT_HOOK
and ATTR_KEY_HOOK.

The address of your replacement hook function is passed to
4-15

xvt_vobj_set_attr, and replaces the default hook function.

Example: The calls to xvt_vobj_set_attr look like this:
xvt_vobj_set_attr(NULL_WIN, ATTR_EVENT_HOOK, (long)

event_hook);
xvt_vobj_set_attr(NULL_WIN, ATTR_KEY_HOOK, (long)

key_hook);

The name of the hook function used by the application replaces
event_hook and key_hook. (You choose the name and code the
hook function.)

See Also: For more details on the keyboard hook functions, see the
XVT Platform-Specific Books.

XVT Portability Toolkit Guide

4-16

4.4.4. Application Errors
Normally, applications clean up in response to the E_DESTROY event
sent to the task window. However, abnormal exits might not
generate this event.

XVT lets you create your own error handler function so you can deal
with abnormal exits and perform appropriate cleanup activities. You
can register your function by using xvt_vobj_set_attr.

In any case, the final XVT behavior is to display a fatal error dialog
box and then terminate the application.

See Also: The example in section 2.4 shows how to specify an application-
specific error handler.
For more information about error handling, see Chapter 21,
Diagnostics and Debugging.

4.5. Descriptions of XVT Events
The sections that follow (organized alphabetically) describe each
event type. Only the part of the EVENT_TYPE union that applies to the
event under discussion is shown.

See Also: To see the complete EVENT_TYPE structure, see section 4.2 on page
4-6.
For additional details about XVT events, see the “Events” portion of
the XVT Portability Toolkit Reference.
4.5.1. E_CHAR Events and Virtual Key Codes

Partial Event Structure
typedef struct {

EVENT_TYPE type;/* E_CHAR */
union {

...
struct s_char {

XVT_WCHAR ch; /* wide character */
BOOLEAN shift; /* Shift key? */
BOOLEAN control; /* Control or

Option key? */
BOOLEAN virtual_key; /* virtual key? */
unsigned long modifiers; /* key bit field

modifiers */
} chr;
...

} v;
} EVENT;

Events

XVT sends an E_CHAR event to the event handler for a WINDOW
when the user types a character or virtual key code into a window.
The E_CHAR event is delivered only to the event handler of the
window which has the keyboard focus, and then only if a control has
not absorbed the character event for its own use. When the WINDOW
event handler receives an event, the WINDOW argument specifies the
window in which the event occurred, and the EVENT pointer defines
an EVENT structure with fields in the chr union expressing event-
specific information. The ATTR_PROPAGATE_NAV_CHARS attribute
allows your application to control the propagation of character
events from controls to windows.

If the key is held down and auto-repeat occurs, a separate event is
generated for each repetition. Consequently, repeated characters do
not require special handling.

Implementation Note: In XVT/Win32 the task window’s event handler receives E_CHAR
events only if the task window is drawable (platform-specific
attribute ATTR_WIN_PM_DRAWABLE_TWIN is set to TRUE). On XVT/
Mac, E_CHAR events also are delivered to XVT dialogs. However, to
maintain portability, you should not process character events sent to
dialogs.

Processing Characters

The EVENT substructure chr contains the character code member (ch)
which is an XVT_WCHAR. XVT_WCHAR is an encapsulation of the
4-17

ANSI wchar_t type, although this implementation may vary
depending on the support supplied by native ANSI C libraries.
Applications should not assume that the size of this field is equal to
a short.

Multibyte-aware applications must use the XVT function
xvt_str_convert_wc_to_mb before assigning a wide character to a
multibyte string array or before processing the character with other
XVT functions. In a switch statement test of a wide character, a
multibyte application must also compare the ch character to a wide
character constant.

It is recommended, though not required, that single-byte
applications also call xvt_str_convert_wc_mb. However, single-byte
applications can always cast XVT_WCHAR characters to char as long
as the character is not a virtual key (and does not rely on the virtual
key—high byte—portion of the XVT_WCHAR). In multibyte
applications, this method does not work because the high byte
portion is necessary for representing normal character keys.

XVT Portability Toolkit Guide

4-18

See Also: For more information about processing strings in a multibyte-aware
application, see section 19.2.5 on page 19-25.

Text Edit Object Events

If the window with focus contains a text edit object, and the text edit
object is active, your application must take special action to process
the character event. (Your application can determine if the text edit
object is active by calling the following two functions in succession:
xvt_scr_get_focus_vobj and xvt_vobj_get_type.) In such a case, when a user
types a character in the text edit object, the E_CHAR event is sent to
the window’s event handler. Your event handler should propagate
the character event to the text edit object by calling
xvt_tx_process_event.

Shift and Control Characters

The BOOLEAN members of the chr substructure, shift and control,
indicate whether the Shift or Control keys were held down while a
character was typed. However, if the user types an uppercase
character or a control character (such as ‘\t’ or ‘\b’), the true value of
the character code is in ch, so your application doesn’t have to look
at shift or control to see what was actually typed. In fact, your
application should use the shift and control members sparingly,
because doing so may make it less portable.

Implementation Note: On XVT/Mac, the shift field does not always report the depression of
a Shift key. In some cases, the character is converted prior to event
creation (just like happens with an uppercase character).
Modifier Keys

In addition to the shift and control fields, the modifiers field is a general
way for detecting a pressed modifier key (Control key, Option key,
Alt key, etc.). This field holds bit-wise flags to indicate one or more
modifier keys selected. All available modifier keys are passed in the
E_CHAR event for use by the application. The following constants are
defined for bit positions in the modifiers field and indicate which
corresponding key or keys are held down:
XVT_MOD_KEY_NONE

No modifier keys are pressed (and only this bit is set in the
modifiers field).

XVT_MOD_KEY_SHIFT
Shift key is pressed (either XVT_MOD_KEY_LSHIFT bit or
XVT_MOD_KEY_RSHIFT bit also set on platforms that can detect
individual Left or Right Shift keys).

Events

XVT_MOD_KEY_CTL
Control key is pressed.

XVT_MOD_KEY_ALT
Alt key is pressed.

XVT_MOD_KEY_LSHIFT
Left Shift key is pressed on platforms that can detect Left Shift
key (XVT_MOD_KEY_SHIFT bit also set).

XVT_MOD_KEY_RSHIFT
Right Shift key is pressed on platforms that can detect Right
Shift key (XVT_MOD_KEY_SHIFT bit also set).

XVT_MOD_KEY_CMD
Command key is pressed.

XVT_MOD_KEY_OPTION
Option key is pressed.

XVT_MOD_KEY_COMPOSE
Compose key is pressed (available on XVT/XM only).

Implementation Note: On XVT/Win32, XVT_MOD_KEY_RSHIFT and XVT_MOD_KEY_LSHIFT
are not reported. XVT_MOD_KEY_CMD and XVT_MOD_KEY_OPTION
are reported on XVT/Mac only. XVT_MOD_KEY_COMPOSE is
reported on XVT/XM only.

Virtual Keys

XVT virtual key values are the K_* values (F1, Home key, etc.)
defined in the xvt_defs.h header file. Virtual keys in character
4-19

events may be detected in several ways.

For the ASCII character code set only, values of the ch field greater
than UCHAR_MAX indicate a virtual key (except for K_DEL, which is
less than UCHAR_MAX).

The virtual_key member of the chr substructure is also set to TRUE to
identify virtual key characters. In multibyte applications, virtual key
codes may conflict with some multibyte character encodings.
Therefore, the virtual_key field must be validated for multibyte
applications.

Alternatively, the most general means for testing for a virtual key
(regardless of character code set) is to pass the EVENT structure to the
xvt_event_is_virtual_key utility function, which then determines if the
character in the E_CHAR event is a virtual key.

Implementation Note: Do not use the Control key for keyboard shortcuts (mnemonics),
because the native platforms for XVT/Win32 use the Control key
with menu accelerators. Also, on XVT/Mac, the Option key

XVT Portability Toolkit Guide

4-20

generates non-ASCII characters.
XVT/Mac stores these characters into the ch member, and they can
be handled normally but their use may make your application
non-portable.

See Also: For details about virtual key codes, see “Key Codes” in the XVT
Portability Toolkit Reference.

Key Hook Attribute

You can change the mapping of raw key codes (as generated by the
keyboard) to XVT virtual key codes, or add new codes, by changing
the default key hook function. This is done with the function
xvt_vobj_set_attr and the attribute ATTR_KEY_HOOK.

The parameters passed to a key hook function vary between
platforms. Parameters also depend on whether your XVT
application is capable of processing multibyte characters (by
setting ATTR_MULTIBYTE_AWARE to TRUE):
Single-byte mode

Hook functions receive only platform-specific data.
Multibyte-aware mode

Key hook functions on all platforms receive a pointer to the
EVENT structure (E_CHAR event), in addition to platform-
specific information. This is necessary because only the hook
function knows if it is mapping a passed character to a virtual
key in a multibyte-aware environment and can set the virtual_key
member properly.
Note that the interface for multibyte hook functions is called only if
ATTR_MULTIBYTE_AWARE is set to TRUE, otherwise the single-byte
(default) interface is used.

See Also: For details on the key hook functions, see ATTR_KEY_HOOK,
described in the appendices of the XVT Platform-Specific Books.

Events

Example: The following code processes characters delivered in E_CHAR
events:
long XVT_CALLCONV1 win_eh(WINDOW win, EVENT * ep)
{

static int x = LEFT_MGN, y = 0;
char mbc[XVT_MAX_MB_SIZE + 1];
int len, width;
...
switch (ep->type) {

...
case E_CHAR:

if (y == 0) {
y = doc.height;
xvt_dwin_set_caret_pos(win, x, y);
xvt_dwin_set_caret_visible(win, TRUE);

}
if (xvt_event_is_virtual_key(ep)) {

/* don’t process virtual characters */
return;

len = xvt_str_convert_wc_to_mb(mbc,
ep->v.chr.ch);

if ((len == 0) ||
 ((len == 1) && !xvt_str_is_alnum(mbc)))
/* only process alphanumeric characters */
return;

width = xvt_dwin_get_text_width(win, mbc, 1);
if (x + width > doc.rct.right) {

if (++doc.curline >= doc.maxlines) {
4-21

xvt_dm_post_note(
"Characters don’t fit!");

return;
}
x = LEFT_MGN;
y += doc.height;

}
xvt_dwin_draw_text(win, x, y, mbc, 1);
x += width;
xvt_dwin_set_caret_pos(win, x, y);
save_char(ep->v.chr.ch);
...
break;

...
}

}

XVT Portability Toolkit Guide

4-22

4.5.2. E_CLOSE Events

Partial Event Structure
typedef struct {

EVENT_TYPE type; /* E_CLOSE */
union {

/* no union member */
} v;

} EVENT;

XVT sends an E_CLOSE event to the event handler for a window or
dialog in response to the user clicking its “close box.” Windows that
aren’t created with either the WSF_CLOSE or WSF_DECORATED flags
won’t have a “close box.” (Choosing Close on the File menu doesn’t
generate an E_COMMAND event, since it’s really a menu selection.)

The WINDOW argument tells the event handler which dialog or
window the user tried to close. No additional information is needed
to process this event, so the EVENT structure contains none.

When this event is received, the window or dialog hasn’t actually
been closed; your application must call xvt_vobj_destroy to accomplish
that. Additional events (such as E_FOCUS) may then be generated for
the window, and your application must be prepared to handle them.
The last event for a window will be an E_DESTROY (discussed later
in this section).

If E_CLOSE is ignored, then no window is closed, and nothing in
the application changes. This distinction is important. Typically,
applications check the state of the window upon receiving an

E_CLOSE event. If the state indicates that the contents of the window
or dialog have been saved (for example), then the application can
simply call xvt_vobj_destroy. If, however, the contents have not been
saved, the application can display a dialog asking if the user wishes
to save or discard changes, so that the changes can be preserved
before calling xvt_vobj_destroy.

E_CLOSE events are generated for the task window, regular windows,
and dialogs. They are not generated for print windows, pixmaps,
controls, or screen windows.

Note: If the task window’s event handler receives an E_CLOSE event, and
the application calls xvt_vobj_destroy(TASK_WIN), then the application
is terminated.

Events

E_CLOSE Example

In the following code, the application provides the function
OK_to_close elsewhere:
long XVT_CALLCONV1 a_window_eh(WINDOW win, EVENT * ep)
{

switch (ep->type) {
case E_COMMAND:

switch (ep->v.cmd.tag) {
case M_FILE_CLOSE:

if (OK_to_close(win))
xvt_vobj_destroy(win);

break;
}
break;

case E_CLOSE:
if (OK_to_close(win))

xvt_vobj_destroy(win);
break;

}
}

4.5.3. E_COMMAND Events

Partial Event Structure
typedef struct {

EVENT_TYPE type; /* E_COMMAND */
union {

...
4-23

struct s_cmd {
MENU_TAG tag; /* menu item tag */
BOOLEAN shift; /* Shift key down? */
BOOLEAN control; /* Control (Option) key

down? */
} cmd;
...

} v;
} EVENT;

XVT generates an E_COMMAND event when the user makes a menu
selection (or causes a menu selection by typing a menu-accelerator
key). However, selections from Font/Style menus generate E_FONT
events, not E_COMMAND events.

The WINDOW referenced in the event handler is associated with the
menubar from which the selection was made. Within the cmd
substructure (in the EVENT structure referenced in the event handler),
the tag member refers to the menu item chosen. Tags can be any
integer value between 1 and MAX_MENU_TAG (32000).

XVT Portability Toolkit Guide

4-24

If you want to vary the behavior of a command when the Shift,
Control, or both keys are down, examine the shift and/or control
members to see if the user pressed one of these modifier keys when
making the menu selection.

Typically, applications are structured so that the menu tags found
in the EVENT structure for E_COMMAND events are parsed via switch
statements. These statements are coded in either the event handler or
in a function called by the event handler which you can design to
handle all menu-initiated operations.

E_COMMAND events are generated only for task windows and top-
level windows. Dialogs, child windows, and windows created
without menubars cannot have menubars, so their event handlers
will never receive E_COMMAND events.

E_COMMAND Example

The following code handles command events in a window event
handler. The macros M_FILE_CLOSE and M_FILE_QUIT are defined in
xvtmenu.h, which is included by xvt.h.
#include <xvt.h>

static void
do_menu(WINDOW win, MENU_TAG cmd, BOOLEAN shift,

BOOLEAN control)
{

switch (cmd) {
case M_FILE_CLOSE:

do_close(win);

break;

case M_FILE_QUIT:
xvt_app_destroy();
break;

}
}
long XVT_CALLCONV1 a_window_eh(WINDOW win, EVENT * ep)
{

switch (ep->type) {
case E_COMMAND:

do_menu(win, ep->v.cmd.tag, ep->v.cmd.shift,
 ep->v.cmd.control);
break;

}
}

Additionally, applications commonly need to pass E_COMMAND
events to the task window’s event handler, even though the
menu is attached to another window. For example, in cases
such as the opening and closing of files, you can call

Events

xvt_win_dispatch_event(TASK_WIN, ep) in a window’s event handler to
pass the events. This allows all processing for some common events
to occur in a single place.

4.5.4. E_CONTROL Events

Partial Event Structure
typedef struct {

EVENT_TYPE type; /* E_CONTROL */
union {

...
struct s_ctl { /* E_CONTROL */

short id; /* control's resource ID */
CONTROL_INFO ci; /* control info */

} ctl;
...

} v;
} EVENT;

XVT sends an E_CONTROL event to the event handler for a window
or dialog in response to the user operating a control in that window
or dialog. XVT also generates an E_CONTROL event when the
underlying window system indirectly modifies the state of a control.

The WINDOW argument passed to the event handler refers to the
window or dialog containing the control, not the WINDOW that
represents the control itself.
4-25

The WINDOW that references the control itself is contained in the win
field of the CONTROL_INFO structure contained in the event structure
for E_CONTROL events. This WINDOW is used to identify the control
for functions that operate on controls.

The ctl substructure of the EVENT structure describes what happened
to the control. Its id member is the numeric ID assigned when the
control was created. (The id must be unique among the controls
within any one window.) The ci member supplies additional control-
specific information.

The type member of the CONTROL_INFO structure gives the type of
control. Control types are defined in the WIN_TYPE enumeration by
the prefix WC_*. All WC_* control types are allowed in both
windows and dialogs.

XVT doesn’t generate E_CONTROL events for the optional scrollbars
placed alongside edges of windows as decorations, but generates
E_HSCROLL and E_VSCROLL events instead. However, scrollbar
controls within windows or dialogs do generate E_CONTROL events.

XVT Portability Toolkit Guide

4-26

Event handlers for task windows, regular windows, and dialogs can
all receive E_CONTROL events.

What to Do with an E_CONTROL Event

What should your application do upon receiving an E_CONTROL
event? The following design approach works well.

Tip: To handle an E_CONTROL event:

1. Branch on the control ID.

2. Infer the control type based on your ID numbering scheme.
This lets you determine which substructure in the union within
the CONTROL_INFO structure is appropriate for the event, and for
the control.

3. Check the contents of the control-specific substructure.

4. Based on that control’s properties and behavior, perform
operations that reflect your application’s needs for that event.
For a button control event, do whatever action is initiated by
pressing the button. For a check box or radio button, set the
control’s state appropriately with xvt_ctl_set_checked or
xvt_ctl_check_radio_button.

Some controls have no additional information associated with them,
while others have several pieces of information.

Note: XVT does not automatically check radio buttons and check boxes.
Also, in many cases you will want to defer making permanent

changes to the application model until a subsequent button is clicked
or a menu command is issued, confirming that it’s okay to set these
controls. This is a design issue subject to your discretion.

See Also: For information about properties and behaviors of controls, as well
as the events they can generate, see Chapter 8, Controls.

4.5.5. E_CREATE Events

Partial Event Structure
typedef struct {

EVENT_TYPE type; /* E_CREATE */
union {

 /* no union member */
} v;

} EVENT;

Events

XVT sends an E_CREATE event to the event handler for a WINDOW
immediately after the window or dialog has been created. This event
is guaranteed to be the first event received by the event handler.
E_CREATE is also guaranteed to be the first event sent to the task
event handler. The task event handler receives the E_CREATE event
after the application calls xvt_app_create.

The WINDOW argument tells the event handler which dialog or
window has been created. No additional information is needed to
process this event, so the EVENT structure contains none.

In response to E_CREATE events, applications usually perform some
or all of the following operations (although you aren’t limited to
these):

• Initialize the window or dialog (set event masks, initialize
structures, etc.)

• Attach window or dialog-specific data via xvt_vobj_set_data

• Set or modify the appearance, title, decorations, attributes,
size, or position of the window or dialog

• Create controls to be placed in a window, or initialize
controls in windows or dialogs

Do not perform drawing operations during window initializations;
your application automatically receives an update event, and in
response to this, you can draw in the window.
4-27

Note: When the task window’s event handler receives an E_CREATE
event, the implication is that the application itself has been created
(along with the task window). Application-level initializations
(and operations such as creating your initial top-level document
windows) are best performed in response to an E_CREATE event in
the task event handler.

4.5.6. E_DESTROY Events

Partial Event Structure
typedef struct {

EVENT_TYPE type; /* E_DESTROY */
union {

 /* no union member */
} v;

} EVENT;

XVT sends an E_DESTROY event to the event handler of a window
or dialog to notify your application that the WINDOW is about to be

XVT Portability Toolkit Guide

4-28

destroyed. Typically, an event handler receives an E_DESTROY event
soon after your application has called xvt_vobj_destroy. The purpose of
the event is to give your application a chance to free memory it has
allocated for application data associated with the WINDOW being
destroyed.

An E_DESTROY event is guaranteed to be the last event an event
handler receives. An E_DESTROY event sent to the task event handler
is guaranteed to be the last event received by the application.

The WINDOW argument tells the event handler which window or
dialog has been destroyed. No additional information is needed to
process this event, so the EVENT structure contains none.

Responding to E_DESTROY Events

In response to E_DESTROY events, applications will usually perform
some or all of the following operations (although you aren’t limited
to these):

• Perform window or dialog-specific terminations (free
structures, save window states, close files, etc.)

• Free window or dialog-specific data (set earlier by
xvt_vobj_set_data) by calling xvt_vobj_get_data

• Remove the window from application-specific window
registration or management data structures

Note: When the task window’s event handler receives an E_DESTROY
event, the implication is that the application itself is about to be

terminated (along with the task window). So, E_DESTROY is a good
cue to perform application-level cleanup and termination.

The only XVT WINDOW function that can be called during the
processing of an E_DESTROY event is xvt_vobj_get_data for the window
or dialog being destroyed. Also, the application data value for
controls in windows or dialogs cannot be accessed in response to an
E_DESTROY event; by this time, these controls are essentially “dead.”
If you need to access the application data of a control before the
parent window or dialog is destroyed, you can do this in response to
the dialog or window’s E_CLOSE event, before issuing any calls to
xvt_vobj_destroy for the window or dialog.

Events

4.5.7. E_FOCUS Events

Partial Event Structure
typedef struct {

EVENT_TYPE type; /* E_FOCUS */
union {

...
BOOLEAN active; /* is the window or dialog

gaining the focus? */
...

} v;
} EVENT;

An E_FOCUS event is generated when a window or dialog gains or
loses the focus (conditions known as activation and deactivation).
A WINDOW gains or loses the focus as a result of the following
actions:

• The user clicks on a focusable area of a window
• Any active keyboard navigation occurs
• Your application calls xvt_scr_set_focus_vobj

In each case, XVT notifies the application that the focus has
changed.

For a given window, focus activation events are always guaranteed
to be paired with either a subsequent focus deactivation event or, if
the window has been closed while it has focus, an E_DESTROY event.
4-29

Deactivation events are always followed by activation events, and
vice versa, until the window is closed.

Responding to Focus Changes

Windows and dialogs often respond to focus changes in the
following ways:

• Set the cursor in a window or dialog to some application-
specific shape, which implies that the focus is now here
(or has gone).

• Check the clipboard to see what formats are available and,
if any can be used, enable the Paste command on the Edit
menu. Otherwise, disable the Paste command. This is
necessary because activation may have resulted from another
application.

• If there is a text or graphic selection and the focus was lost,
show it by reversing the selected text (draw a black rectangle

XVT Portability Toolkit Guide

4-30

with a drawing mode of M_XOR). If the focus was gained, then
redraw the text in XOR mode.

Do not attempt to deal with the following issues, which XVT
handles automatically:

• Activating or deactivating the title (caption) bar, the
scrollbars, or the size box

• Removing or restoring a blinking caret (do not call
xvt_dwin_set_caret_visible when you get an activate or deactivate
event)

Focus Deactivate Events

On a focus deactivate event, don’t worry about the menubar or the
clipboard but, if text or graphics were selected, consider showing
them as unselected. Many applications will not have to do anything
in response to E_FOCUS events.

Note: On a focus deactivate event, you never know whether the user
switched from one window to another within the same application or
between different applications.

Focus Example

The following code fragments illustrate how to enable and disable
items on the Edit menu when a window gains the focus:
static CB_FORMAT paste_fmt;
static void update_menus(WINDOW win)
{

BOOLEAN paste_enable = TRUE;

if (xvt_cb_has_format(CB_APPL, APPL_FORMAT))
paste_fmt = CB_APPL;

else if (xvt_cb_has_format(CB_PICT, NULL))
paste_fmt = CB_PICT;

else if (xvt_cb_has_format(CB_TEXT, NULL))
paste_fmt = CB_TEXT;

else
paste_enable = FALSE;

xvt_menu_set_item_enabled(win, M_EDIT_PASTE,
paste_enable);

xvt_menu_set_item_enabled(win, M_EDIT_CLIPBOARD,
paste_enable);

}

Events

long XVT_CALLCONV1 a_window_eh (WINDOW win, EVENT * ep)
{

switch (ep->type) {
case E_FOCUS:

if (ep->v.active)
update_menus(win);

break;
}

}

4.5.8. E_FONT Events

Partial Event Structure
typedef struct {

EVENT_TYPE type; /* E_FONT */
union {

...
struct s_efont {

XVT_FNTID font_id; /* logical font ID */
} font;
...

} v;
} EVENT;

An E_FONT event is generated when the user chooses an item from
the Font Selection dialog or the Font/Style menu (on platforms that
have it).

Implementation Note: On XVT/XM and XVT/Mac, you can add a Font/Style menu to your
4-31

application by using a DEFAULT_FONT_MENU statement in the XRC
file. The XVT/Win32 platform only has a Font Selection dialog, not
a Font/Style menu.

E_FONT events are very similar to E_COMMAND events, in that they
can represent menu selections. However, E_FONT events represent
only selections from the Font/Style menu or Font Selection dialog.

E_FONT events are sent only to window-event handlers. Dialog-event
handlers never receive E_FONT events, because dialogs lack
menubars. However, if a dialog WINDOW ID is passed as a parameter
in an application call to xvt_dm_post_font_sel, the dialog’s event
handler can receive an E_FONT event.

An E_FONT event represents a user’s selection and specification of a
logical font. A logical font is a description of a desired physical
font—a particular implementation of a font installed on a window
system. The XVT_FNTID member of the E_FONT event represents the
user’s selection.

XVT Portability Toolkit Guide

4-32

The entire logical font represents the last font established with
xvt_menu_set_font_sel, as modified by the user’s menu or dialog choice.
In other words, the logical font in the E_FONT event reflects the
user’s modifications to either the Font/Style menu or Font Selection
dialog.

Note: Because the E_FONT event only notifies you of a Font/Style menu or
Font Selection dialog choice, XVT does not automatically set check
marks on the Font/Style menu, change the default logical font in the
Font Selection dialog, or change the logical font in the window.

See Also: For more information about logical fonts, see Chapter 15, Fonts and
Text.

Responding to E_FONT Events

When your application receives an E_FONT event, it must determine
whether to apply the user’s Font/Style menu or Font Selection dialog
selection. If so, it must do two things:

• Call xvt_menu_set_font_sel, passing it a copy of the XVT_FNTID
member contained in the EVENT, so that the displayed Font/
Style menu check marks and default Font Selection dialog
logical font reflect the selection made

• Store the logical font somewhere (using xvt_font_copy),
so that the update code can call xvt_win_set_font to make sure
any text that it draws uses that logical font

Events

E_FONT Example: Displaying Text Objects

The following code displays four text objects, represented by this
array of structures:
#define NUM_OBJS 4

static struct { /* information about each
object */

char *text; /* text */
PNT pos; /* starting position */
RCT bounds; /* bounding rectangle */
XVT_FNTID font_id; /* font */

} obj[NUM_OBJS] = {
{

"This is the first sentence.",
{50, 10}

},
{

"This is the second sentence.",
{125, 150}

},
{

"This is the third sentence.",
{200, 100}

},
{

"This is the fourth sentence.",
{275, 200}

}
};

During application initialization, the font_id member of each object is
set and the bounding rectangle is calculated:
4-33

XVT Portability Toolkit Guide

4-34

static void startup(void)
{

int i;
WINDOW win;

win = xvt_win_create(W_DOC, XVT_MAX_WINDOW_RECT,
"FONT", WIN_MENUBAR, TASK_WIN,
WSF_SIZE|WSF_CLOSE, EM_ALL, win_eh, 0L);

for (i = 0; i < NUM_OBJS; i++) {
obj[i].font_id = xvt_font_create();
xvt_font_set_family(obj[i].font_id,

XVT_FFN_HELVETICA);
xvt_font_set_style(obj[i].font_id, XVT_FS_NONE);
switch (i % 3) {
case 0:

xvt_font_set_size(obj[i].font_id, 20);
break;

case 1:
xvt_font_set_size(obj[i].font_id, 10);
break;

case 2:
xvt_font_set_size(obj[i].font_id, 12);

}
set_bounds(win, i);

}
xvt_menu_set_item_enabled(win, M_FILE_NEW, TRUE);

}

static void
set_bounds(WINDOW win, int n)
{

int ascent, descent, width;

xvt_font_map(obj[n].font_id, win);
xvt_font_get_metrics(obj[n].font_id, NULL,

&ascent, &descent);
xvt_dwin_set_font(win, obj[n].font_id);
width = xvt_dwin_get_text_width(win,
obj[n].text, -1);
xvt_rect_set(&obj[n].bounds, obj[n].pos.h,

obj[n].pos.v - ascent, obj[n].pos.h + width,
obj[n].pos.v + descent);

}

When the user clicks within the bounding rectangle of one of the
four objects, the global variable sel_obj is set to that object’s subscript
in the obj array, and the function invert_selection is called to select it.
Or, if the clicked-on object is already selected, sel_obj is set to NO_OBJ
and no object is selected.

Events

E_FONT Example: Menus and Dialogs

The Font/Style menu and Font Selection dialog are set to correspond
to the currently selected object, or to have no check marks (in the
menu) if no object is selected. This serves two purposes:

• When an object is selected, the user can pull down the
Font/Style menu or bring up the Font Selection dialog and
see what its attributes are

• If the user actually specifies a new font, the font_id passed
along with the E_FONT event reflects the new font for the
object

If the user pulls down the Font/Style menu when no object is
selected, the absence of check marks shows that no font can be
changed. If the user brings up the Font Selection dialog when no
object is selected, the default font is the same as that returned by
xvt_font_create.
#define NO_OBJ -1
static int sel_obj = NO_OBJ;
static void
invert_selection(WINDOW win)
{

if (sel_obj != NO_OBJ) {
DRAW_CTOOLS tools;
CBRUSH hollow_cbrush;

hollow_cbrush.pat = PAT_HOLLOW;
hollow.cbrush.color = COLOR_BLACK;
xvt_dwin_get_draw_ctools(win, &tools);
4-35

xvt_dwin_set_draw_mode(win, M_XOR);
xvt_dwin_set_std_cpen(win, TL_PEN_BLACK);
xvt_dwin_set_cbrush(win, &hollow_cbrush);
xvt_dwin_draw_rect(win, &obj[sel_obj].bounds);
xvt_dwin_set_draw_ctools(win, &tools);

}
}
static void
fix_font_menu(WINDOW win)
{

if (sel_obj != NO_OBJ)
xvt_menu_set_font_sel(win, obj[sel_obj].font_id);

else {
xvt_menu_set_font_sel(win, NULL_FNTID);

}
}

XVT Portability Toolkit Guide

4-36

E_FONT Example: Handling the E_FONT

When an E_FONT event occurs, the font_id passed in the EVENT
structure reflects the new logical font for the currently selected
object, since the menus were previously set up to reflect that object’s
logical font. Here is the code that handles E_FONT events:
static void
do_font(WINDOW win, XVT_FNTID font_id)
{

RCT rct;

if (sel_obj != NO_OBJ) {
xvt_menu_set_font_sel(win, font_id);
rct = obj[sel_obj].bounds;/* old bounds */
inflate_rect(&rct, 1);
xvt_dwin_invalidate_rect(win, &rct);

/* old bounds */
xvt_font_copy(obj[sel_obj].font_id, font_id,

XVT_FA_ALL);
set_bounds(win, sel_obj);
rct = obj[sel_obj].bounds;/* old bounds */
inflate_rect(&rect, 1);
xvt_dwin_invalidate_rect(win, &rct);

/* old bounds */
}

}
long XVT_CALL_CONV1 win_eh(WINDOW win, EVENT * ep)
{

switch (ep->type) {
...
case E_FONT:

do_font(win, ep->v.font.font_id);
break;

...
}

}

Events

4.5.9. E_HELP Events

Partial Event Structure
typedef struct {

EVENT_TYPE type; /* E_HELP */
union {

...
struct s_help {

WINDOW obj; /* target for help--window,
dialog, or control */

MENU_TAG tag; /* target for help--menu
item */

XVT_HELP_TID topic;
/* help topic, usually

NULL_TID */
} help;
...

} v;
} EVENT;

An E_HELP event is generated when the application user requests
online help. Usually your application does not have to handle
E_HELP explicitly, since the help system handles this event
automatically and does not pass it on to your application’s event
handlers.

You can process the help event yourself if you’re writing your own
help system or creating special-case help services for certain
containers.
4-37

Only one of the three members of the s_help structure is relevant for
any single E_HELP event, depending on the type of object for which
the user requested help.

If the user requests help for a window, dialog, or control:
• The WINDOW member of s_help contains the identifier of

that object
• The MENU_ITEM member of s_help is NULL

• The XVT_HELP_TID member of s_help contains NULL_TID

If the user requests help for a menu item:
• The MENU_ITEM member of s_help is the identifier of the menu

item for which help is requested
• The WINDOW member of s_help is NULL_WIN

• The XVT_HELP_TID member of s_help contains NULL_TID

XVT Portability Toolkit Guide

4-38

If the user requests help for a specific topic (rather than for a specific
GUI object):

• The XVT_HELP_TID member of s_help contains the
topic identifier

• The WINDOW member of s_help is NULL_WIN

• The MENU_ITEM member of s_help is NULL

See Also: For more information on handling help events, see Chapter 22,
Hypertext Online Help.

4.5.10. E_HSCROLL and E_VSCROLL Events

Partial Event Structure
typedef struct {

EVENT_TYPE type; /* E_VSCROLL or E_HSCROLL */
union {

...
struct s_scroll_info {

SCROLL_CONTROL what; /* location */
short pos; /* thumb position */

} scroll;
...

} v;
} EVENT;

XVT sends an E_HSCROLL event to a window’s event handler to
notify your application that the user has operated one of the
scrollbars that are part of a window’s frame. Only windows with

the WSF_HSCROLL, WSF_VSCROLL, or WSF_DECORATED flag set at
creation time receive these events.These flags cannot be added or
removed later.

These events are not sent to dialog event handlers, because dialog
windows cannot have scrollbars.

The what member indicates which part of the scrollbar was operated,
as shown below:
typedef enum { /* site of scrollbar activity */

SC_NONE, /* nowhere (event ignored) */
SC_LINE_UP, /* one line up */
SC_LINE_DOWN, /* one line down */
SC_PAGE_UP, /* previous page */
SC_PAGE_DOWN, /* next page */
SC_THUMB, /* thumb repositioning */
SC_THUMBTRACK /* dynamic thumb tracking */

} SCROLL_CONTROL;

Events

The various parts of an XVT scrollbar are shown in Figure 4.2. The
interpretation of line and page is entirely up to your application. Each
click on the scrollbar generates a separate E_HSCROLL or E_VSCROLL
event. If the user holds the mouse button down, a sequence of events
occurs.

Member what is equal to SC_THUMBTRACK while the user drags the
thumb, and SC_THUMB when the user stops dragging. In these cases,
member pos indicates the current position of the thumb relative to the
range and proportion of the scrollbar. The range must have been
previously set with a call to xvt_sbar_set_range. If no such call was
made, the range is undefined, so pos is meaningless.

Figure 4.2. Parts of a scrollbar

Usually, your application will do the same thing for both
SC_THUMBTRACK and SC_THUMB scrollbar events; if you prefer not
to track the thumb dynamically, you can safely ignore

line-up arrow

page-up region

thumb

page-down region

line-down arrow

line-up arrow

page-up region

thumb

page-down region

line-down arrow

line-up arrow

page-up region

thumb

page-down region

line-down arrow

line-up arrow

page-up region

thumb

page-down region

line-down arrow

line-up arrow

page-up region

thumb

page-down region

line-down arrow

line-up arrow

page-up region

thumb

page-down region

line-down arrow

line-up arrow

page-up region

thumb

page-down region

line-down arrow

page-up region

thumb

page-down region

line-down arrow

thumb

page-down region

line-down arrow

page-down region

line-down arrowline-down arrow
4-39

SC_THUMBTRACK occurrences because you will always get a
corresponding SC_THUMB when the user stops dragging.

XVT doesn’t do anything to the window or to the scrollbar when one
of these events occurs.

Tip: To scroll the contents of the window:
Call xvt_dwin_scroll_rect.

Tip: To show the thumb in a new position:
Call xvt_sbar_set_pos.

See Also: Functions that affect scrollbars are also discussed in section 8.3.7 in
Chapter 8, Controls.
For more details about scrolling, see Chapter 13, Scrolling.

XVT Portability Toolkit Guide

4-40

Scrolling Example

The following code reads a file into memory, and lets the user scroll
both horizontally and vertically through the text.

The application data for a window is a pointer to a structure
containing the following information:
typedef struct {

int nlines; /* number of text lines */
char **lines; /* array of pointers to text */
int maxlines; /* max capacity of array */
int line_height; /* height of line in win */
int maxwidth; /* max line width */
PNT org; /* origin (for scrolling) */
...

} DOC;

This discussion addresses only these fields: nlines, maxwidth,
line_height, and org. The nlines and maxwidth fields indicate how much
data the window must scroll vertically and horizontally,
respectively. The line_height field indicates how many pixels
constitute one line of text in the current physical font. The org field
maintains the position of the window’s upper-left corner relative to
the data being displayed.

When drawing in the window, it will be necessary to convert from
data-relative coordinates to window-relative coordinates. This is
done by subtracting the origin org from the data-relative coordinates.
It’s okay if the result is outside the window’s client area, since XVT
clips the output appropriately. These issues are discussed in the
E_UPDATE section (section 4.5.19).
When a file is first read, when the window is resized, or when the
font changes, the scrollbars are set with this function:
static void scroll_sync(WINDOW win, int height,

int width)
{

DOC * d;
d = get_doc_data(win);
xvt_sbar_set_range(win, VSCROLL, 0,

d->nlines + height / d->line_height);
xvt_sbar_set_range(win, HSCROLL, 0,

d->maxwidth + width);
xvt_sbar_set_proportion(win, VSCROLL,

height / d->line_height);
xvt_sbar_set_proportion(win, HSCROLL, width);
xvt_sbar_set_pos(win, VSCROLL,

d->org.v / d->line_height);
xvt_sbar_set_pos(win, HSCROLL, d->org.h);

}

Events

The height and width arguments are the height and width of the
window. The range is set to contain all the data (nlines or maxwidth),
plus an extra window-sized amount in each direction. This allows
the user to scroll up to one page past the end of data, which is typical
of many word processing applications. The vertical scrollbar is
stated in units of lines (based on the line_height); the horizontal
(maxwidth) is stated in units of pixels.

The scrollbar proportions are set to the amount of data visible within
the window. This allows platforms that support proportional
scrollbars to work correctly.

Finally, the scrollbar positions are set based on the current position
of the window within the data.

When an E_HSCROLL or E_VSCROLL event occurs, the function
do_scroll is called:
static void
do_scroll(WINDOW win, SCROLL_TYPE type,

SCROLL_CONTROL what, short pos)
{

DOC * d;
RCT rct;
PNT old_org;
int dh, dv, maxorg, page;

xvt_dwin_update(win);

d = get_doc_data(win);
4-41

old_org = d->org;
xvt_vobj_get_client_rect(win, &rct);

switch (type) {
case HSCROLL:

switch (what) {
case SC_LINE_UP:

d->org.h = max(0, old_org.h - HINTERVAL);
break;

case SC_LINE_DOWN:
d->org.h = min(d->maxwidth,

old_org.h + HINTERVAL);
break;

case SC_PAGE_UP:
d->org.h = max(0, old_org.h - rct.right);
break;

case SC_PAGE_DOWN:
d->org.h = min(d->maxwidth,

old_org.h + rct.right);
break;

case SC_THUMB:
d->org.h = pos;
break;

XVT Portability Toolkit Guide

4-42

default:
break;

}
break;

case VSCROLL:
maxorg = d->nlines * d->line_height;
page = rct.bottom / d->line_height *

d->line_height;
switch (what) {
case SC_LINE_UP:

d->org.v = max(0,
old_org.v - d->line_height);

break;
case SC_LINE_DOWN:

d->org.v = min(maxorg,
old_org.v + d->line_height);

break;
case SC_PAGE_UP:

d->org.v = max(0, old_org.v - page);
break;

case SC_PAGE_DOWN:
d->org.v = min(maxorg, old_org.v + page);
break;

case SC_THUMB:
d->org.v = pos * d->line_height;
break;

default:
break;

}
}
dh = old_org.h - d->org.h;
dv = old_org.v - d->org.v;
if (dh != 0 || dv != 0) {

xvt_dwin_scroll_rect(win, &rct, dh, dv);

xvt_sbar_set_pos(win, VSCROLL,

d->org.v / d->line_height);
xvt_sbar_set_pos(win, HSCROLL, d->org.h);

}
}

long XVT_CALLCONV1 win_eh(WINDOW win, EVENT * ep)
{

switch (ep->type) {
...
case E_HSCROLL:

do_scroll(win, HSCROLL, ep->v.scroll.what,
ep->v.scroll.pos);

break;
case E_VSCROLL:

do_scroll(win, VSCROLL, ep->v.scroll.what,
ep->v.scroll.pos);

break;
...
}

}

Events

Features of the do_scroll Function

The following are several important things to note in do_scroll:
• Before doing anything else, you must call the XVT function

xvt_dwin_update. This causes any pending updates to be
processed before you do the scrolling. Without this call, these
updates would be processed using the new origin, even
though they applied to the value of the origin before the
window was scrolled.

• You must change the origin stored in the window’s
application data before calling xvt_dwin_scroll_rect.
This is necessary because xvt_dwin_scroll_rect will generate one
or more E_UPDATE events before it returns.
For the drawing to be done correctly by the update code, it
will need the new value of the origin.

• Make sure that the origin stays within the range of allowed
values; calls to max and min guarantee this. Recall that the
vertical scrollbar is stated in units of lines, and the horizontal
is stated in units of pixels. The vertical size of a line is the
line_height, based on the physical font; horizontally, an
arbitrary number of pixels is used. Similarly, vertical pages
must be an integral multiple of line_height; horizontally, the
width of the client area is sufficient.

• Finally, after computing the new origin, call xvt_dwin_scroll_rect
to scroll the window’s contents, and call xvt_sbar_set_pos to set
4-43

the new position of the thumb.

See Also: For more information about scrolling, see Chapter 13, Scrolling.

XVT Portability Toolkit Guide

4-44

4.5.11. E_MOUSE_DBL Events

Partial Event Structure
typedef struct {

EVENT_TYPE type; /* E_MOUSE_DBL */
union {

...
struct s_mouse {

PNT where; /* location of event */
BOOLEAN shift; /* Shift key down? */
BOOLEAN control; /* Control key down? */
short button; /* button number */
XVT_INT32 scroll_x; /* scroll delta in the X axis -

E_MOUSE_SCROLL only */
XVT_INT32 scroll_y; /* scroll delta in the Y axis -

E_MOUSE_SCROLL only */
} mouse;
...

} v;
} EVENT;

XVT sends an E_MOUSE_DBL event to a window’s event handler for
an XVT window in response to the user double-clicking a mouse
button while the mouse pointer is in the client area of the window.

Dialogs do not send mouse events to their event handlers. The
location of the mouse cursor in window-relative coordinates is
stored in the where member. The states of the Shift and Control keys
are stored in the shift and control members. The button member
specifies the button; it can have the values 0, 1, or 2, but only 0 and
1 are fully portable.
Double-click Definition

A double-click is defined as a button-down action that rapidly
follows a button-up action. Each platform defines “rapidly”
according to its own tolerances. XVT reports the button-up action
separately as an E_MOUSE_UP event. A second E_MOUSE_UP follows
the E_MOUSE_DBL as soon as the user lets up on the button.

Hence, four events result (in this order) from a double-click:
E_MOUSE_DOWN
E_MOUSE_UP
E_MOUSE_DBL
E_MOUSE_UP

The application does not necessarily receive all four events. When
one of the events occurs, the application might take action (such as

Events

bringing up a dialog box) that precludes receiving the other events.
See the example below.

If your application must handle single-click events but ignore
double-click events, you should either set an application flag when
an E_MOUSE_DBL event occurs and then ignore E_MOUSE_UP events
when that flag is set, or ignore E_MOUSE_UP events entirely.

See Also: For more information about mouse events, see the discussion of
dragging in section 4.5.13 on page 4-48.

E_MOUSE_DBL Example

Tip: Before reading this example, review section 4.5.8 on page 4-31.

In this example, when the user double-clicks within an object’s
bounding rectangle, the application makes sure that object is
selected (whether it already is or not) and then opens a dialog box
that shows its point size:
static void do_double(WINDOW win, PNT where)
{

int dbl_obj;
long size;

if ((dbl_obj = find_obj(where)) != NO_OBJ) {
if (sel_obj != dbl_obj) {

invert_selection(win);
sel_obj = dbl_obj;
invert_selection(win);
4-45

}
size = xvt_font_get_size(obj[sel_obj].font_id);
xvt_dm_post_note("%d points", size);
}

}
long XVT_CALLCONV1 win_eh(WINDOW win, EVENT * ep)
{

switch (ep->type) {
...
case E_MOUSE_DBL:

do_double(win, ep->v.mouse.where);
break;

...
}

}

The application does not receive an E_MOUSE_UP event following
the E_MOUSE_DBL because a modal dialog box appears immediately
upon receipt of the E_MOUSE_DBL. The mouse up event goes to the
dialog box, not to an XVT window and, because mouse events in
dialogs are not sent to your application, it is ignored.

XVT Portability Toolkit Guide

4-46

4.5.12. E_MOUSE_DOWN Events

Partial Event Structure
typedef struct {

EVENT_TYPE type; /* E_MOUSE_DOWN */
union {

...
struct s_mouse {

PNT where; /* location of event */
BOOLEAN shift; /* Shift key down? */
BOOLEAN control; /* Control key down? */
short button; /* button number */
XVT_INT32 scroll_x; /* scroll delta in the X axis -

E_MOUSE_SCROLL only */
XVT_INT32 scroll_y; /* scroll delta in the Y axis -

E_MOUSE_SCROLL only */
} mouse;
...

} v;
} L

EVENT;

XVT sends an E_MOUSE_DOWN event to a window’s event handler
in response to the user clicking a mouse button while the mouse
pointer is in the client area of the window.

In XVT, dialogs do not send mouse events to their event handlers.
The native platform handles mouse events in dialogs. The location
of the mouse cursor in window-relative coordinates is stored in the
where member. The states of the Shift and Control keys are stored in

the shift and control members. The button member specifies the button;
it can have the values 0, 1, or 2, but only 0 and 1 can be generated
on all platforms.

When the user releases the button, a separate E_MOUSE_UP event can
be generated.

Normally, a click is defined as an E_MOUSE_DOWN /E_MOUSE_UP
pair; however, on some platforms, if the cursor is moved outside the
window in which the E_MOUSE_DOWN event occurred, the
corresponding E_MOUSE_UP event might be dropped or sent to a
different window. If E_MOUSE_MOVE events occur between
E_MOUSE_DOWN and E_MOUSE_UP, the user is dragging the mouse.

If the mouse has moved out of all XVT windows, you will not get
the event at all.

Events

Tip: To guarantee that you get an E_MOUSE_UP, even if it occurs outside
the window in which the E_MOUSE_DOWN occurred:

Trap the mouse with xvt_win_trap_pointer and subsequently release
it with xvt_win_release_pointer.

See Also: For more information about E_MOUSE_UP events, see section 4.5.14
on page 4-52.

E_MOUSE_DOWN Example

In the following code fragment, the object in which the
E_MOUSE_DOWN occurred is noted (in the variable down_obj), but
nothing is done unless an E_MOUSE_UP occurs in the same object.
static void do_mouse(WINDOW win, EVENT_TYPE type,

PNT where)
{

static int down_obj = NO_OBJ;

switch (type) {
case E_MOUSE_DOWN:

down_obj = find_obj(where);
break;

case E_MOUSE_UP:
if (down_obj == find_obj(where)) {

/* unselect selected object */
invert_selection(win);

if (down_obj == sel_obj)

/* user wanted to unselect */
4-47

sel_obj = NO_OBJ;
else

/* select new object */
sel_obj = down_obj;

/* show new selection, if any */
invert_selection(win);

}
down_obj = NO_OBJ;

}
}

long XVT_CALLCONV1 win_eh(WINDOW win, EVENT * ep)
{

switch (ep->type) {
case E_MOUSE_DOWN:
case E_MOUSE_UP:

do_mouse(win, ep->type, ep->v.mouse.where);
break;

...
}

See Also: For more details about E_MOUSE_UP events, see section 4.5.14 on
page 4-52.

XVT Portability Toolkit Guide

4-48

4.5.13. E_MOUSE_MOVE Events

Partial Event Structure
typedef struct {

EVENT_TYPE type; /* E_MOUSE_MOVE */
union {

...
struct s_mouse {

PNT where; /* location of event */
BOOLEAN shift; /* Shift key down? */
BOOLEAN control; /* Control key down? */
short button; /* button number */
XVT_INT32 scroll_x; /* scroll delta in the X axis -

E_MOUSE_SCROLL only */
XVT_INT32 scroll_y; /* scroll delta in the Y axis -

E_MOUSE_SCROLL only */
} mouse;
...

} v;
} EVENT;

XVT sends an E_MOUSE_MOVE event to a window’s event handler in
response to the user moving the mouse pointer in the client area of
an XVT window.

In XVT, dialogs do not send mouse events to their event handlers.
The native platform handles mouse events in dialogs. The location
of the mouse cursor in window-relative coordinates is stored in the
where member. The v.mouse.shift, v.mouse.control, and v.mouse.button fields
are not valid for this event.

Events

Dragging

XVT generates E_MOUSE_MOVE events whether the mouse button is
down or not. Most applications take action on mouse movements
only when the button is down (that is, only when E_MOUSE_MOVE
events occur between E_MOUSE_DOWN and E_MOUSE_UP events).
This is called dragging.

Tip: To ensure that your application gets the E_MOUSE_UP event:
Trap the mouse with a call to xvt_win_trap_pointer and release it
with a call to xvt_win_release_pointer.

XVT generates E_MOUSE_MOVE events as often as the mouse is
moved, but you can’t rely on their frequency or regularity because
other tasks may be going on concurrently.

To help you implement auto-scrolling, E_MOUSE_MOVE events are
generated continuously when the mouse is trapped, even if it isn’t
physically moved.

Because E_MOUSE_MOVE events are passed to a window’s event
handler whether your application does anything with them or not,
make sure that you don’t waste time before returning when your
event handler gets an event that it ignores. In addition, because of the
extra processing overhead associated with XVT’s sending the
mouse move events to the event handler each time, it is often
desirable to have XVT not send the event to an event handler at all,
especially if you are ignoring them.
4-49

Tip: You might want to use XVT’s event masking feature to specify that,
for certain windows, events should not be sent to their event
handlers.

See Also: For more information about trapping the mouse, see Chapter 14,
Cursors and Carets.
For information about event masking, see section 4.4.2 on page
4-14.

E_MOUSE_MOVE Example

The following code fragments demonstrate what happens during
mouse move events:

• Allowing the user to specify the size of an object to be
created by dragging out a rubberband rectangle

• Transforming the rectangle
• Drawing the rubberband rectangle

XVT Portability Toolkit Guide

4-50

Specifying the Size of the Rectangle
static void do_mouse(WINDOW win, EVENT * ep)
{

static PNT last_pnt;
static enum {DR_OUTLINE, DR_NONE}

drag_type = DR_NONE;
static BOOLEAN first_move;
static RCT outline;

switch (ep->type) {
case E_MOUSE_DOWN:

drag_type = DR_OUTLINE;
outline.left = ep->v.mouse.where.h;
outline.top = ep->v.mouse.where.v;
last_pnt = ep->v.mouse.where;
xvt_win_trap_pointer(win);
first_move = TRUE;
break;

case E_MOUSE_MOVE:
if (drag_type == DR_NONE)

return;
if (last_pnt.h == ep->v.mouse.where.h &&
 last_pnt.v == ep->v.mouse.where.v)

return(TRUE);/* didn't really move */
if (!first_move)

/* erase old rect */
rubber_rect(win, &outline);

first_move = FALSE;
outline.right = ep->v.mouse.where.h;
outline.bottom = ep->v.mouse.where.v;
last_pnt = ep->v.mouse.where;

/* draw new rect */
rubber_rect(win, &outline);

break;

case E_MOUSE_UP:
if (drag_type == DR_NONE)

return;
xvt_win_release_pointer();
if (!first_move)

/* erase rubber rect */
rubber_rect(win, &outline);

normalize_rect(&outline, &outline);
create_object(win, &outline);
drag_type = DR_NONE;
break;

}
}

Events

long XVT_CALLCONV1 win_eh(WINDOW win, EVENT * ep)
{

switch (ep->type) {
...
case E_MOUSE_DOWN:
case E_MOUSE_UP:
case E_MOUSE_MOVE:

do_mouse(win, ep);
break;

...
}

}

The event handler sends mouse-related events to do_mouse.
The variable drag_type indicates whether dragging is in effect.
It is set on an E_MOUSE_DOWN and cleared on an E_MOUSE_UP.
Each E_MOUSE_MOVE event erases the previous rubberband
rectangle, if there was one; the variable first_move determines this.
The code then draws a rectangle having the new dimensions.

During the E_MOUSE_DOWN, the program traps the mouse with a
call to xvt_win_trap_pointer, which guarantees it will get the
E_MOUSE_UP. When the E_MOUSE_UP is retrieved, the code erases
the rubberband rectangle, releases the mouse, and creates an object
having the bounding rectangle that the user specified by dragging
the rubberband.

Note: The state variables drag_type, last_pnt, first_move, and
outline are declared to be static, because their values must persist
between calls to do_mouse. Alternatively, you could store them in a
4-51

data structure associated with the window, using the function
xvt_vobj_set_data.

Transforming the Rectangle

The function normalize_rect (shown below) transforms a rectangle to
ensure that its top is not greater than its bottom, and its left is not greater
than its right. This is necessary because the user can move the mouse
in any direction after pressing the button; that is, the starting and
ending points of the dragging operation can be anywhere relative to
each other.
static void normalize_rect(RCT * norm_rctp, RCT * rctp)
{

xvt_rect_set(norm_rctp, min(rctp->left,
rctp->right),

 min(rctp->top, rctp->bottom),
 max(rctp->left, rctp->right),
 max(rctp->top, rctp->bottom));

}

XVT Portability Toolkit Guide

4-52

Drawing the Rubberband Rectangle

The function rubber_rect draws a rubberband rectangle, using a
PAT_HOLLOW rectangle, a PAT_RUBBER pen, and the function
xvt_dwin_draw_rect:
static void rubber_rect(WINDOW win, RCT * rctp)
{

RCT rct;
DRAW_CTOOLS t;

xvt_app_get_default_ctools(&t);
t.pen.pat = PAT_RUBBER;
t.brush.pat = PAT_HOLLOW;
t.mode = M_XOR;
xvt_dwin_set_draw_ctools(win, &t);
normalize_rect(&rct, rctp);
xvt_dwin_draw_rect(win, &rct);

}

4.5.14. E_MOUSE_SCROLL Events

Partial Event Structure
typedef struct {

EVENT_TYPE type; /* E_MOUSE_SCROLL */
union {

...
struct s_mouse {

PNT where; /* location of event */
BOOLEAN shift; /* Shift key down? */
BOOLEAN control; /* Control key down? */

short button; /* button number */
XVT_INT32 scroll_x; /* scroll delta in the X axis -

E_MOUSE_SCROLL only */
XVT_INT32 scroll_y; /* scroll delta in the Y axis -

E_MOUSE_SCROLL only */
} mouse;
...

} v;
} EVENT;

XVT sends an E_MOUSE_SCROLL event to a window’s event handler in response
to the user operating a mouse scroll wheel while the mouse pointer is in the client area
of the window.

Events

In XVT, dialogs do not send mouse events to their handlers. The location of the
mouse cursor in window-relative coordinates is stored in the where member. The
states of the Shift and Control keys are stored in the shift and control members. The
button member is not valid for this event. The vertical scroll delta is stored in the
scroll_y member. A positive value indicates that the scroll wheel was rotated forward,
away from the user; a negative value indicates that the scroll wheel was rotated
backward, toward the user. The horizontal scroll delta is stored in the scroll_x
member. A positive value indicates that the scroll wheel was rotated left, counter-
clockwise to the user; a negative value indicates that the scroll wheel was rotated
right, clock-wise to the user.

Special note for X-Motif users; X handles mouse scroll events as mouse button
presses. Depending upon the platforms the mouse driver needs to be properly
configured to map scroll wheel motion to a button number. XVT, using the defaults,
maps button 4 to a positive scroll_y value; button 5 to a negative scroll_y value;
button 6 to a positive_x value; and button 7 to a negative scroll_x value. Mouse driver
configuration information, not all protocols are supported on all platforms or by all
mouse hardware.

Option “XAxisMapping” “N1 N2”

Specifies which buttons are mapped to motion in the X direction in wheel
emulation mode. Button number N1 is mapped to the negative X axis motion and
button number N2 is mapped to the positive X axis motion. Default: no mapping.

Option “YAxisMapping” “N1 N2”

Specifies which buttons are mapped to motion in the Y direction in wheel
emulation mode. Button number N1 is mapped to the negative Y axis motion and
button number N2 is mapped to the positive Y axis motion. Default: “4 5”.

Option “ZAxisMapping” “X”
4-53

Option “ZAxisMapping” “Y”

Option “ZAxisMapping” “N1 N2”

Option “ZAxisMapping” “N1 N2 N3 N4”

Set the mapping for the Z axis (wheel) motion to buttons or another axis (X or
Y). Button number N1 is mapped to the negative Z axis motion and button number
N2 is mapped to the positive Z axis motion. For mice with two wheels, four button
numbers can be specified, with the negative and the positive motion of the second
wheel mapped respectively to buttons number N3 and N4. Default: “4 5 6 7”.

XVT Portability Toolkit Guide

4-54

4.5.15. E_MOUSE_UP Events

Partial Event Structure
typedef struct {

EVENT_TYPE type; /* E_MOUSE_UP */
union {

...
struct s_mouse {

PNT where; /* location of event */
BOOLEAN shift; /* Shift key down? */
BOOLEAN control; /* Control key down? */
short button; /* button number */
XVT_INT32 scroll_x; /* scroll delta in the X axis -

E_MOUSE_SCROLL only */
XVT_INT32 scroll_y; /* scroll delta in the Y axis -

E_MOUSE_SCROLL only */
} mouse;
...

} v;
} EVENT;

XVT sends an E_MOUSE_UP event to a window’s event handler in
response to the user releasing a mouse button while the mouse
pointer is in the client area of the window.

In XVT, dialogs do not send mouse events to their event handlers.
The location of the mouse cursor in window-relative coordinates is
stored in the where member. The states of the Shift and Control keys
are stored in the shift and control members. The button member

specifies the button; it can have the values 0, 1, or 2, but only 0 and
1 are portable across all platforms.

An E_MOUSE_UP event is not necessarily preceded by an
E_MOUSE_DOWN or E_MOUSE_DBL event because those button
actions might have taken place outside of the XVT window.
Therefore, you usually want to code your application so that
spurious E_MOUSE_UP events are ignored.

Similarly, an E_MOUSE_UP event isn’t necessarily generated every
time an E_MOUSE_DOWN or E_MOUSE_DBL event is because the
button might have been released outside of the window. To ensure
that this doesn’t happen, you can trap the mouse with a call to
xvt_win_trap_pointer.

Events

Example: See the examples in sections 4.5.11, 4.5.12, and 4.5.13.

4.5.16. E_QUIT Events

Partial Event Structure
typedef struct {

EVENT_TYPE type; /* E_QUIT */
union {

...
BOOLEAN query; /* query only? */
...

} v;
} EVENT;

XVT sends an E_QUIT event to the task event handler to notify your
application that the user has initiated a system shutdown. Only task
windows can send these events to their event handlers.

Implementation Note: Only XVT/Win32 generates this event.

If your application has a Quit or Exit item on a menu (File, usually),
this event isn’t generated when the user chooses that item—a normal
E_COMMAND event is generated instead. E_QUIT is reserved for those
cases where the native operating system can tell applications that the
system is performing a system-wide shutdown; it is not an event that
the user can directly generate.

See the Implementation Note later in this section for more detailed
4-55

information on how to use E_QUIT in a portable manner.

Types of E_QUIT Events

The following are the two types of E_QUIT events:
Member query is TRUE

The application should not actually quit (by calling
xvt_app_destroy), but should prepare to quit. Usually, if there are
any unsaved documents, the application will have to query the
user about each via a dialog box containing three buttons: Save,
Discard, and Cancel. The application should do the following in
each case:
Save

Save the document and, if that is successful, close the
window and go on to the next document’s save dialog.

Discard
Don’t save the document, but just close the window and go
on to the next document’s save dialog.

XVT Portability Toolkit Guide

4-56

Cancel
Return from the event handler without showing any more
save dialogs. XVT understands that quitting is not okay.

After the user has been queried about every unsaved document,
and has not clicked the Cancel button for any of them, the
application should call xvt_app_allow_quit and then return from the
task event handler to tell XVT that the application is willing to
quit. However, it shouldn’t quit (by calling xvt_app_destroy)
because other applications also may have to be queried, and one
of them might decline to quit.

Member query is FALSE
The application was previously queried with an E_QUIT event
with query set to TRUE, and it has already determined that
quitting is okay, and told XVT about it by calling
xvt_app_allow_quit. It should immediately call xvt_app_destroy. No
documents have to be saved because they were taken care of
earlier.

Instead of generating this event (query being FALSE), XVT might
instead simply call xvt_app_destroy itself (perhaps from the E_CLOSE
case of a task event handler). Therefore, don’t put any cleanup code
in your case for E_QUIT. Do all cleaning up in your task event handler
in response to the E_DESTROY event.

If your task event handler receives an E_COMMAND event for tag
M_FILE_QUIT, your application should take action similar to case
query TRUE, except that, instead of calling xvt_app_allow_quit, it should
just call xvt_app_destroy. If the user clicked Cancel for any save dialog,

Imp
don’t call xvt_app_destroy.

Remember that E_QUIT is different from E_CLOSE. An E_QUIT event
is not sent to the application when the user attempts to close the task
window, or any other window or dialog. In those cases, E_CLOSE
events are sent, and the event handlers can choose either to call
xvt_vobj_destroy or ignore the event. E_QUIT events are only generated
on those systems which can notify applications of a system-wide
shutdown.

lementation Note: E_QUIT events never occur on XVT/Mac or XVT/XM. As a result,
code that handles them can be debugged only on XVT/Win32, a
query-only E_QUIT is generated when the user closes the windowing
system. If an application does not call xvt_app_allow_quit, then the
attempt to shut down is cancelled. XVT applications don’t have to
do anything special about quitting under the Mac MultiFinder, as
long as they handle the Quit item on the File menu in the proper way.

Events

E_QUIT Example

In the following code fragments, when a query-only E_QUIT event
occurs, or when the user chooses Quit (or Exit) from the File menu,
the function quit_approved is called to determine if quitting is okay. If
it is, then the XVT function xvt_app_allow_quit is called in the first
case, and xvt_app_destroy is called in the second case.
static void do_menu(WINDOW win, MENU_TAG cmd,

BOOLEAN shift, BOOLEAN control)
{

...
switch (cmd) {
...
case M_FILE_QUIT:

if (quit_approved())
xvt_app_destroy();

break;
...
}

}
long XVT_CALLCONV1 task_window_eh(WINDOW win, EVENT * ep)
{

...
switch (ep->type) {
...
case E_COMMAND:

do_menu(win, ep->v.cmd.tag, ep->v.cmd.shift,
ep->v.cmd.control);

break;
...
4-57

case E_QUIT:
if (ep->v.query) {

if (quit_approved())
xvt_app_allow_quit();

}
else

xvt_app_destroy();
break;

...
}

}

In a real application that has documents associated with windows,
quit_approved would ask the user about each unsaved document. But
in this simplified example, it just asks the user whether changes
should be saved.

If the user agrees, the actual saving is done by the function
save_document (not shown here), which returns TRUE if the saving goes
okay and FALSE if it fails. In the case of failure, quit_approved then
returns FALSE, just as it does when the user clicks the Cancel button,
and the quitting procedure is aborted. If saving succeeds, or if the

XVT Portability Toolkit Guide

4-58

user elects to discard changes, the window is closed with a call to
discard_window (also not shown) and quit_approved returns TRUE.
static BOOLEAN quit_approved(void)
{

switch (xvt_dm_post_ask("Save", "Discard", "Cancel",
 "Save changes?")) {
case RESP_DEFAULT:

if (!save_document()) /* try to save document */
return(FALSE);

/* fall through */
case RESP_2:

discard_window(); /* discard window */
return(TRUE);

case RESP_3:
return(FALSE); /* abort quit process*/

}
}

4.5.17. E_SIZE Events

Partial Event Structure
typedef struct {

EVENT_TYPE type; /* E_SIZE */
union {

...
struct s_size {

short height; /* new height */
short width; /* new width */

} size;
...
} v;
} EVENT;

The event handler for a window, dialog, or task window receives an
E_SIZE event for any of the following reasons:

• XVT sends an E_SIZE event—indicating the initial size—
to the event handler for a window, dialog, or task window
immediately following an E_CREATE event. Recall that the
E_CREATE event is sent to notify your application that the
window, dialog, or task window has been successfully
created. Note that, on some platforms, performing certain
operations during a window’s E_CREATE (such as creating a
dialog) might cause an E_SIZE event to be delivered to the
window before the completion of the E_CREATE callback.

• XVT sends an E_SIZE event to the event handler for a window
when the user resizes the window using the border
decorations. Only windows with the WSF_SIZE or

Events

WSF_DECORATED attribute set at creation time can have
window resizing border decorations. On XVT/Win32, an
E_SIZE might also be sent to the task window in response to a
border decoration resize.

• XVT sends an E_SIZE event to a window or dialog event
handler as a result of your application calling xvt_vobj_move.
The height and width fields give the new dimensions of the
client area.

Responding to E_SIZE Events

When your application gets an E_SIZE event, you don’t have to
redraw anything; XVT generates a separate E_UPDATE if necessary.
However, you should adjust anything dependent on the size of the
client area upon receipt of an E_SIZE event, such as the range or
proportion of the scrollbars or the scale of a picture. If the effect of
increasing or decreasing the size of the window is merely to show
less (or more) of what is in the client area, then you don’t have to do
anything else when an E_SIZE event occurs; XVT automatically clips
anything drawn in the window to fit the new size.

If your application wants to change the scale of a picture
when the size of the window changes, you should make any
necessary adjustments to your data structures and call
xvt_dwin_invalidate_rect. This will generate one or more E_UPDATE
events, which will take care of redrawing the window contents to the
4-59

new scale.

XVT Portability Toolkit Guide

4-60

E_SIZE Example

In the following code fragments, the scrollbar proportions are
adjusted when the window is resized.
static void scroll_sync(WINDOW win, int height,

int width)
{

DOC * d;

d = get_doc_data(win);

xvt_sbar_set_range(win, VSCROLL, 0,
 d->nlines + height / d->line_height);
xvt_sbar_set_range(win, HSCROLL, 0,

d->maxwidth + width);

xvt_sbar_set_proportion(win, VSCROLL,
 height / d->line_height);
xvt_sbar_set_proportion(win, HSCROLL, width);

xvt_sbar_set_pos(win, VSCROLL,
d->org.v / d->line_height);

xvt_sbar_set_pos(win, HSCROLL, d->org.h);
}

long XVT_CALLCONV1 win_eh(WINDOW win, EVENT * ep)
{

switch (ep->type) {
...
case E_SIZE:

scroll_sync(win, ep->v.size.height,
 ep->v.size.width);

break;

...
}

}

See Also: For more details about E_HSCROLL and E_VSCROLL events, see
section 4.5.10 on page 4-38.

Events

4.5.18. E_TIMER Events

Partial Event Structure
typedef struct {

EVENT_TYPE type; /* E_TIMER */
union {

...
struct s_timer {

long id; /* timer ID */
} timer;
...
} v;

} EVENT;

XVT sends an E_TIMER event to the event handler of a window,
dialog, or task window to notify your application that a specified
time interval has elapsed.

The application program establishes timers on a per-window or per-
dialog basis. Once a timer is set, E_TIMER events are sent to the event
handler of the specified window or dialog at a specified regular time
interval. The task window can also have timers.

Using Timers

Tip: To set a timer with a millisecond interval as an argument:
Call xvt_timer_create.
4-61

Tip: To turn off a timer:
Call xvt_timer_destroy.
When a window is closed via xvt_vobj_destroy, then all timers for
the window are killed automatically. It is unnecessary and
invalid to call xvt_timer_destroy to kill the timer for a window
when it gets an E_DESTROY.

An application can have more than one timer; the maximum number
is implementation-dependent. The function xvt_vobj_get_attr and
attribute ATTR_NUM_TIMERS can be used to find out how many
timers are available. However, the value returned may be incorrect
on systems where timers are a resource shared between multiple
applications. To deal with this problem, check the return code from
xvt_timer_create to find out if a timer was available at the time when
the function call was made.

XVT provides at least one timer per window or dialog, even for
those platforms that only support a single timer. However, this may

XVT Portability Toolkit Guide

4-62

not be true if a platform has a finite number of timers shared between
multiple applications.

When writing applications that depend on timers with a certain
interval, make sure that the interval is achievable on all platforms
where the application must run.

An application must not depend on any minimum latency between
the theoretical timeout and the actual E_TIMER delivery. For non-
preemptive systems, this delay can be arbitrarily long if another
application is active. XVT guarantees that timers send events no
sooner than specified.

Tip: Common uses for XVT timers are timed demos, connection
timeouts, polling of input devices, and crude animation. Timers are
not useful for situations demanding a high degree of precision.

E_TIMER Example

The following code sets a timer when a window is created. E_TIMER
events are then received sometime after the passage of 1000
milliseconds, and cause a status bar to be updated. Additional
E_TIMER events continue to be generated at 1000-millisecond
intervals until the window or the timer is destroyed.
long XVT_CALLCONV1 a_window_eh(WINDOW win, EVENT * ep)
{

switch (ep->type) {
case E_CREATE:

xvt_timer_create(win, 1000);
break;
case E_TIMER:
update_status_bar(win);
break;

}
}

Events

4.5.19. E_UPDATE Events

Partial Event Structure
typedef struct {

EVENT_TYPE type; /* E_UPDATE */
union {

...
struct s_update {

RCT rct; /* update rectangle */
} update;
...

} v;
} EVENT;

XVT sends an E_UPDATE event to the event handler for an XVT
window when part or all of the client area of the window needs to be
redrawn. This event might be generated as the result of window
creation, a change in the stacking order of the windows, user
manipulation of the window, or by functions such as
xvt_dwin_scroll_rect and xvt_dwin_invalidate_rect.
Pending E_UPDATE events can also be expedited by xvt_dwin_update.

Note: E_UPDATE events are only generated to regular window event
handlers; dialog event handlers do not receive them.

The rct field gives the bounding rectangle of the area that needs to be
drawn, in window-relative coordinates.

Don’t assume that only one E_UPDATE event is generated when a
4-63

window needs to be redrawn. XVT may send several E_UPDATE
events for different areas of the window, or may combine the areas
into a single bounding rectangle. Also, you can’t make any
assumptions about when E_UPDATE events will occur; they may
occur anytime after the receipt of the window’s E_CREATE event.

Drawing and E_UPDATE Events

In response to an E_UPDATE event, you should at least draw the part
that needs updating. If you draw more than that, XVT may, for
efficiency, temporarily reduce the clipping area so that only the part
that needs updating can actually be drawn.

Tip: It is usually best to organize your application so that most, if not all,
drawing occurs in response to E_UPDATE events, rather than drawing
things as you progress. That way the occurrence of an update event
will be the usual case rather than the exception, and the program is
likely to be simpler and more reliable. When the data structure
representing the contents of a window changes, don’t draw the

XVT Portability Toolkit Guide

4-64

changes immediately. Instead, after making changes to the data
structure, induce an update event with xvt_dwin_invalidate_rect.

A newly created visible, regular window (non-dialog, non-pixmap,
and non-print) always gets an E_UPDATE event for its entire client
area shortly after being created, so it is not necessary to draw into a
new window.

Inducing E_UPDATEs

Don’t induce an E_UPDATE event when it’s important to draw right
away, to keep up with the user or to show animation. For example,
when the user selects an object with the mouse, immediately draw
whatever is required to show the selection; waiting for the E_UPDATE
event may cause a noticeable delay.

In addition, don’t induce an E_UPDATE event when the user operates
a scrollbar. The window will scroll much faster if you move some
pixels already there with a call to xvt_dwin_scroll_rect, rather than
repainting the entire window.

During E_UPDATE, do not call xvt_app_process_pending_events.

Updating Rectangles

When you are calling xvt_dwin_invalidate_rect several times to
invalidate disjoint areas of the window, it may be advantageous to
call xvt_app_process_pending_events between calls to
xvt_dwin_invalidate_rect. This allows each update rectangle to be
handled individually. Otherwise, the several disjoint update

rectangles may be merged into a single rectangle, causing your
application to update more of the screen than is needed. If you do
this, take into account that there will be a recursive call to your
window’s event handler.

Caution: Many XVT functions cannot be called during the processing of an
E_UPDATE event—calling them causes XVT to issue an error. For
example, do not call xvt_app_process_pending_events. For more
information and a complete list of functions that you cannot call
during an E_UPDATE event, see section 4.3.3 on page 4-10.

Events

E_UPDATE Example

Example: In the following code fragments, the function do_update is called
when an E_UPDATE event is received:
static void do_update(WINDOW win, RCT rct)
{

DRAW_CTOOLS t;
DOC * d;
int i, ascent, descent, y, bottom;

xvt_dwin_get_draw_ctools(win, &t);
xvt_dwin_clear(win, t.backcolor);

d = get_doc_data(win);
xvt_dwin_set_font(win, d->font_id);
xvt_dwin_get_font_metrics(win, NULL, &ascent,

&descent);
bottom = rct.bottom + d->line_height;

/* start with first visible line */
for (i = d->org.v / d->line_height,

y = rct.top + ascent;
i < d->nlines && y < bottom;
i++, y += d->line_height) {
rct.top = y - ascent;
rct.bottom = y + descent;
if (xvt_dwin_is_update_needed(win, &rct)) {

xvt_dwin_draw_text(win, MGN - d->org.h, y,
 d->lines[i], -1);

}
}

4-65

}

long XVT_CALLCONV1 win_eh(WINDOW win, EVENT * ep)
{

RCT rct;

switch (ep->type) {
...
case E_UPDATE:

xvt_vobj_get_client_rect(win, &rct);
do_update(win, rct);
break;

...
}

}

This code is typical for updating a window containing text. First, it
clears the window by filling it with its current background color.
The loop then draws each line that is part of the update rectangle,
using xvt_dwin_is_update_needed to check. The variable i refers to the
data for each line, while y keeps track of each line’s location. The

XVT Portability Toolkit Guide

4-66

process stops either when it reaches the end of the data, or when it
moves off the bottom of the client area.

4.5.20. E_USER Events

Partial Event Structure
typedef struct {

EVENT_TYPE type; /* E_USER */
union {

...
struct s_user {

long id; /* application ID */
void *ptr; /* application pointer */

} user;
...

} v;
} EVENT;

XVT does not generate an E_USER event. The E_USER event lets you
pass custom events to window or dialog event handlers. It is used in
conjunction with xvt_win_dispatch_event, which sends E_USER events
(or any other XVT event that you might wish to synthesize), in a
non-queued fashion, to an event handler. (The application can also
call an event handler directly, but XVT recommends that you use
xvt_win_dispatch_event.)

You can distinguish various kinds of E_USER events by giving them
unique IDs, the administration of which is up to your application.
The structure for an E_USER event also contains a member for a

pointer, which you can use for whatever purpose you want.

The range of legal values for the id field is 0 to 32767. All values
greater than 32767 are reserved for future XVT use.

xvt_win_dispatch_event directly (synchronously) sends an event to an
event handler, and then returns when the event handler has finished
processing the event. XVT does not support an event queue.

Resources and XRC

5
RESOURCES AND XRC

This chapter explains how to use XVT’s XVT Resource Compiler
 (XRC) to specify resources for menus, dialogs, windows,
and strings. You can then use the xrc compiler to translate your
XRC specification into a resource script or binary file that you can
use on a particular XVT platform.

You can create XRC resources in XVT-Design without having to write
XRC code. XVT-Design can generate controls, menus, windows,
dialogs and other resource objects, along with their XRC file.
If you use XVT-Design, you won’t need most of the information in
this chapter, except as a general background.

γ

5-1

See Also: For information about using the xrc tool and for detailed
descriptions of the XRC resource language, refer to the
XVT Portability Toolkit Reference.
For information about dynamically binding resources to a multibyte-
aware (internationalized) application, see sections 19.2.7 and 19.4.7
in Chapter 19, Multibyte Character Sets and Localization.

XVT Portability Toolkit Guide

5-2

5.1. Resources
Resources are specifications for menus, dialogs, windows, controls,
strings, bitmap images, and fonts that are kept in a small, read-only
database located outside your application’s runtime address space.
When your application needs a resource, the application requests the
resource by an ID number (referred to as the resource ID or RID).
XVT or the native window system then reads the resource into
memory so it can be accessed. This saves space at runtime and
makes it possible to construct resources without recompiling your
C programs.

Example: For example, consider this XVT call. It accesses a dialog resource
by ID:

xvt_dlg_create_res(WD_MODAL, 101, EM_ALL,
eventhandler_fcn, 0L);

In this example, the xvt_dlg_create_res function searches the resources
for a dialog specification numbered 101, which specifies the size of
the dialog, the type and position of the controls, the labels on the
controls, and so on. It then displays the dialog on the screen.

5.1.1. Predefined Resources
XVT supplies some predefined resources whose resource IDs are
above 30000. XVT reserved the RIDs above 30000 for its own use.
Any resources you create in your application must be positive
numbers less than 30000.
Note: XVT supplies some predefined dialog IDs in the range 9050 to 9099.

See Also: For more information on XVT’s predefined dialogs, see section 7.3
on page 7-6.

5.1.2. Other System-Specific Resources
There are usually other system-specific resources. These are needed
by the window system, rather than by XVT itself, and should be in
the resource database as well. For example, Macintosh applications
need a “bundle” resource, and MS-Windows applications need icon
resources.

Resources and XRC

5.1.3. Binary Resources
The resources that are accessed at runtime are called binary
resources. They may be located in a separate file from the executable
application, they may be bound into the executable file, or they may
be in a special part of the file (on the Mac, the resource fork).

See Also: For details on system-specific resources, see your window system
documents.

5.2. Portable Resource Concepts

5.2.1. Creating Portable Resources with XRC
Each platform has its own native resource language for describing
resources in a text file. XVT provides a XVT Resource Compiler
 (XRC) that lets you write resources for menus, dialogs,
windows, strings, images, and fonts. XVT’s XRC compiler (xrc)
translates your XRC specification into the native resource language.
By using XRC, you don’t have to learn a new native resource
language whenever you port to a new platform.

See Also: For information about describing native resources, see the XVT
Platform-Specific Books.

Figure 5.1 shows two ways to create portable resources. You can
manually code the resources into a text file in XRC. Or you can
5-3

develop the resources with XVT-Design™, an XVT utility product
that interactively produces XRC.

XVT Portability Toolkit Guide

5-4

Figure 5.1. Building resources with xrc

You compile the XRC script with xrc (for any of the XVT
platforms) using a platform-specific resource compiler.

XVT-DesignText
Editor

XRC Script
(text)

xrc

Native
Compiler

Compiled
Resource Files

Native Resource
Language
XVT-Design was developed to simplify the creation of resources.
It allows you to directly generate controls, menus, windows, dialogs
and the other resource objects as they will appear on the user’s
screen. When you are satisfied with their placement and
appearance, XVT-Design generates a XRC file that works with XVT,
as well as a C Language framework for your application’s user
interface.

See Also: For more information about platform-specific resource compilers,
see the XVT Platform-Specific Books.

γ

Resources and XRC

5.2.2. General Rules for Coding Resources
This section lists the rules that you must follow when coding
resources for XVT applications, whether in XRC or in a native
resource language:

• The standard XVT resources for menus, dialogs, windows,
strings, etc., must be present in all applications. The files
xrc.h and xrc_plat.h define these resources. If you’re using
xrc, you get them automatically when you #include the xrc.h
file in your application XRC file. If not, you’ll have to extract
them from xrc.h and xrc_plat.h. Do this only if you’re
experienced in using XRC and the native resource compiler.

• Don’t assume that you can use native resources already coded
for an existing application when you recode it for XVT. This
will usually work, but may require special handling of non-
XVT features.

• If a window or dialog has a navigation object installed,
observe the numbering requirements for the Default and
Cancel buttons. The default button ID must be DLG_OK, and
the cancel button must have a resource ID of DLG_CANCEL.

• Make the base name of the XRC file (the part before the .xrc
suffix) the same as the base_appl_name field of the XVT_CONFIG
structure passed to the XVT function xvt_app_create.

Note: While all the rules are important, the first rule listed above is vital.
5-5

XVT-Design automatically follows all resource-coding rules.

See Also: For more information on DLG_* control IDs, see the
XVT Portability Toolkit Reference.

γ

XVT Portability Toolkit Guide

5-6

5.2.3. Resources for Internationalized Applications
When writing an international XVT application, resources become
an integral aspect of the application design and your software
development process. For example, when running xrc, you will
need to make sure that the correct header files for your locale are
available and that you have defined a LANG_* constant in the source
file, or on the command line, to include the localized header file
version for your target locale.

See Also: For more detailed information about how to provide resources for
international XVT applications, see sections 19.2.7 and 19.4.7 in
Chapter 19, Multibyte Character Sets and Localization.

5.2.4. XVT Coordinate Units for Resources
In XRC, and also in WIN_DEF arrays, XVT coordinate units describe
the position and dimensions of windows, dialogs, and controls. XVT
defines three types of coordinate units:

• pixels
• chars
• semichars

The semantics differ for pixels versus chars and semichars.

See Also: For more information about these coordinate units, see the units XRC
statement in the XVT Portability Toolkit Reference.
5.2.4.1. Pixels
When you generate XRC with units of pixels (or an array of WIN_DEF
structures with a UNIT_TYPE of U_PIXELS), then XVT interprets all
specified sizes and locations as exact pixel values.

Example: If you specify a push button to be 24 pixels high, then the push
button will be 24 pixels high, regardless of the platform or system
font. If the system font happens to be 16 pixels high, then 24 is a
good value for a push button. However, if the system font is 26
pixels high, then 24 produces a badly scaled push button.

See Also: For more information on pixel coordinates and drawing, see
Chapter 10, Coordinate Systems, and Chapter 11, Drawing and
Pictures.

Resources and XRC

5.2.4.2. Chars and Semichars
By using chars or semichars (UNIT_TYPE of U_CHARS or
U_SEMICHARS), you can specify “device-independent” sizes for
objects. XVT defines semichars and chars relative to the size of the
system font on any given platform:

• A char is similar to a semichar, except that a char is the same
height as the system font and is the width of an average
character in the system font

• A semichar is 1/8 the height of the system font and 1/4 the
width of an average character in the system font

Example: If you specify a push button to be 12 semichars high (i.e., 1 1/2 times
the height of the system font), then on the platform with the 16-pixel
system font, the push button will be 24 pixels high, and on the
platform with the 26-pixel system font, the push button will be 39
pixels high.

5.2.4.3. Scaling Controls and Dialogs
Specifying controls in semichars or chars scales the controls to keep
the same amount of space around the label. You should specify
geometry for sizes (width, height) as well as for coordinates (x, y)
in the same coordinate units. In a dialog, this scales the entire dialog
correctly so that controls won’t grow or shrink, or run into or away
from each other.
5-7

XVT Portability Toolkit Guide

5-8

5.2.5. Formatting GUI Objects for Different Platforms

XVT-Design generates macros for “tweaking” the size and spacing
of dialogs, windows, and controls. The XRC files that XVT-Design
creates define all dialogs, windows, and controls in terms of the
XRC_RECT macro. This section discusses this macro and tells how
to override it.

The XRC_RECT macro changes the size and spacing of rectangles
created in XRC files. XVT defines the XRC_RECT macro in terms of
the macros XRC_DEST_WIDTH, XRC_DEST_HEIGHT, XRC_SRC_WIDTH,
and XRC_SRC_HEIGHT, as follows:

scaled_x = x * XRC_DEST_WIDTH / XRC_SRC_WIDTH

scaled_y = y * XRC_DEST_HEIGHT / XRC_SRC_HEIGHT

scaled_w = w * XRC_DEST_WIDTH / XRC_SRC_WIDTH

scaled_h = h * XRC_DEST_HEIGHT / XRC_SRC_HEIGHT

XRC_RECT automatically uses these macros to change the size and
spacing of XRC rectangles. They define the height and width of the
“system font” on the “source” platform (where the XRC files were
generated) and the “destination” platform (where the generated
application is built). These macros allow the GUI objects defined in
the XRC file to be scaled proportionally to the system font to ensure
that they have an acceptable appearance.

Tip: Even if you are not using XVT-Design-generated XRC files, you

γ

might want to copy these macros from an XVT-Design-generated
XRC file into your XRC file and use XRC_RECT for windows,
dialogs, and controls.

5.2.5.1. Overriding the Macros
XVT-Design always gives usable default values to the XRC_SRC_*
and XRC_DEST_* macros. However, if you want to override these
macros to resize your XVT-Design generated application, you can
reset them before the XRC_RECT macro definition, at the top of the
XRC file created by XVT-Design, or by specifying them explicitly
on the xrc execution line of the application’s makefile.

If the controls, windows, and dialogs have the wrong size or wrong
spacing on your destination platform, you can change either or both
of the XRC_SRC_* and XRC_DEST_* macros. Increasing the XRC_SRC_*
macro values results in smaller, more closely spaced controls, and
decreasing them results in larger, more widely spaced controls.

Resources and XRC

Changing the XRC_DEST_* macro values has the reverse effect.
Decreasing them produces smaller, more closely spaced controls,
and increasing them produces larger, more widely spaced controls.

Implementation Note: If the destination platform is Win32, you should change only the
XRC_SRC_* macro values, since the XRC_DEST_* macros are in terms
of
chars or semichars. On other platforms, you should define values for
both the XRC_SRC_* and XRC_DEST_* macros, since by default the
XRC_DEST_* values are set to those of the corresponding XRC_SRC_*
values, and no change in spacing takes effect.

Example: On XVT/XM, placing the following lines at the start of your XRC
file before XRC_RECT is defined causes controls to appear larger and
more widely spaced:

#define XRC_SRC_WIDTH 8
#define XRC_SRC_HEIGHT 16
#define XRC_DEST_WIDTH 12
#define XRC_DEST_HEIGHT 24

5.3. XRC Language Specification
The XRC language adheres to these guidelines:

• XRC scripts generally follow the same lexical rules as C.
• Identifiers must start with a letter. They can consist of up to

31 letters, numbers, and underscores. Keywords are case-
insensitive, but #defined identifiers are case-sensitive.
5-9

• Comments begin with /* and end with */ (C style comments),
or begin with // and terminate at the end of the line (C++ style
comments).

• A backslash at the end of a line indicates that the line is
continued onto another line. The backslash and the line-
ending characters are ignored. A backslash can occur in the
middle of a string, or even in the middle of a token.

• Strings must be surrounded by double quotes (""). A double
quote or a backslash appearing in a string must be preceded
by a backslash.

• Two sequential strings are concatenated together to form a
single string. For example, "ABC" "DEF" is the same as
"ABCDEF". The two strings can be separated by any amount
of whitespace (including none).

• When certain escape sequences starting with a backslash are
inside a string, xrc processes them like this:

XVT Portability Toolkit Guide

5-10

\" becomes "
\\ becomes \
\n becomes line feed character
\t becomes tab character

In addition, a backslash followed by 1, 2, or 3 octal digits is
converted to the equivalent 8-bit character. Legal values are
\0 to \377. Although xrc accepts any of these values and
outputs them to the native resource file, they might not map
to legal characters on particular platforms, or they might map
to different characters on different platforms.
Backslash escape sequences not processed by xrc pass
through untouched (e.g., \b, \94, \x7AOD). However, this
could change in future versions of xrc.

• Backslashes appearing in pathnames in #include statements are
not treated specially, and do not have to be escaped by
doubling them. That is, a path such as \pgm\rsrc.xrc can be
typed literally in an #include statement.

• Whitespace is any sequence of comments, spaces, tabs,
carriage returns, or line feeds. Whitespace is optional except
when needed to separate two adjacent identifiers.

• A text line can be terminated by a line feed (decimal 10), a
carriage return (decimal 13), a line feed followed
immediately by a carriage return, or a carriage return
followed immediately by a line feed. This allows the XRC
compiler to process any text file without first converting it
to the native text-file format.
• In an XRC script, specifications for strings, windows,
dialogs, and images can appear in any order. Within a dialog
or window specification, however, the statement order
matters. Submenus and items appear in a menu in the order
that the statements appear. Lines from #transparent statements
are output in the order in which those statements appear.

• Whenever an integer constant is needed, a constant
expression can appear also. Such an expression must consist
only of integer constants and these tokens:

(&& <= ^
) || >= <>
+ ! << ?
– == >> :
* % &
/ != |

Resources and XRC

The || and && operators can result in short-circuit evaluation
in the following sense: If the right-hand side does not have to
be evaluated in order to determine the value of the expression
and it contains undefined preprocessor symbols, those
symbols are simply ignored. Of course, if the right-hand side
contained a symbol that was defined, it would have been
replaced by its definition before the operator was evaluated.

• Integer constants are taken as octal constants if they begin
with a zero; otherwise they are taken as decimal.
5-11

XVT Portability Toolkit Guide

5-12

5.4. Writing XRC Scripts
The best way to begin writing an XRC script is to study this chapter
along with any XVT-provided examples, each of which has an
associated XRC file.

The standard XVT menus and dialogs for each platform are
contained in a file called xrc_plat.h. This file is included by xrc.h,
which itself should be included by all XRC scripts.

Tip: The xrc_plat.h file also serves as an XRC example. You might find
it useful to print out and study this file.

See Also: For detailed descriptions of the XRC resource language, refer to the
XVT Portability Toolkit Reference.

5.5. Compiling XRC
For information about compiling XRC with xrc, see the
XVT Portability Toolkit Reference. Keep in mind that, while XRC
input is the same for all platforms, the xrc compiler’s output script
varies from one target platform to another.

Resources and XRC

5.6. Sample XRC Script
The following file was generated by XVT-Design. This is
fontmap.xrc, from the Font Mapper (samples/design/fontmap)
example in the sample area:
#ifndef APPNAME
#define APPNAME fontmap
#endif
#ifndef QAPPNAME
#define QAPPNAME "fontmap"
#endif
#ifndef PROJECT
#define PROJECT fontmap.9
#endif

#ifndef NO_STD_FONT_MENU
#define NO_STD_FONT_MENU
#endif

#include "xrc.h"
#scan "fontmap.h"

#ifndef XRC_SRC_WIDTH
#define XRC_SRC_WIDTH 8
#endif
#ifndef XRC_SRC_HEIGHT
#define XRC_SRC_HEIGHT 13
#endif
#if XVTWS == WINWS
UNITS SEMICHARS
#undef XRC_DEST_WIDTH
#define XRC_DEST_WIDTH 4
#undef XRC_DEST_HEIGHT
5-13

#define XRC_DEST_HEIGHT 8
#elif XVTWS == WMWS
UNITS CHARS
#undef XRC_DEST_WIDTH
#define XRC_DEST_WIDTH 1
#undef XRC_DEST_HEIGHT
#define XRC_DEST_HEIGHT 1
#else
UNITS PIXELS
#ifndef XRC_DEST_WIDTH
#define XRC_DEST_WIDTH XRC_SRC_WIDTH
#endif
#ifndef XRC_DEST_HEIGHT
#define XRC_DEST_HEIGHT XRC_SRC_HEIGHT
#endif
#endif

#define XRC_RECT(x,y,w,h) ((x)*XRC_DEST_WIDTH)\
XRC_SRC_WIDTH,((y)*XRC_DEST_HEIGHT)\
XRC_SRC_HEIGHT,((w)*XRC_DEST_WIDTH)\
XRC_SRC_WIDTH,((h)*XRC_DEST_HEIGHT)\
XRC_SRC_HEIGHT

MENUBAR FONTMAP_MENUBAR

XVT Portability Toolkit Guide

5-14

MENU FONTMAP_MENUBAR
SUBMENU FILE_MENU "~File"

SUBMENU MAPPING_MENU "~Mappings"
SUBMENU OPTIONS_MENU "~Options"

#if (XVTWS!=WINWS) && defined(XVT_WIN_MENU)
XVT_WIN_MENU

#endif
DEFAULT_HELP_MENU

MENU FILE_MENU
ITEM FILE_MENU_OPEN "~Open Mappings..."
ITEM FILE_MENU_MERGE "~Merge Mappings..."
ITEM FILE_MENU_SAVE "~Save Mappings..."
ITEM FILE_MENU_GENERATE_XRC "Generate ~XRC file..."
ITEM FILE_MENU_QUIT "~Quit"

MENU MAPPING_MENU
ITEM MAPPING_MENU_CREATE "~Change Font Mapping"
ITEM MAPPING_MENU_DELETE "~Delete Custom Mapping"
ITEM MAPPING_MENU_CLEAR "Delete ~All Custom Mappings"

MENU OPTIONS_MENU
ITEM OPTIONS_MENU_APPLICATION_DIALOG\

"Use Application Font ~Dialog" CHECKABLE CHECKED
ITEM OPTIONS_MENU_SHOW_MAPPINGS "Show Custom ~Mappings"\

CHECKABLE

MENUBAR TASK_MENUBAR

MENU TASK_MENUBAR
DEFAULT_FILE_MENU
DEFAULT_EDIT_MENU

#if (XVTWS!=WINWS) && defined(XVT_WIN_MENU)
XVT_WIN_MENU

#endif
DEFAULT_HELP_MENU
WINDOW WIN_FONT_MAPPER XRC_RECT(61,169,339,380)\
"Font Mapper" DOC CLOSE INVISIBL E ICONIZABLE\
FONTMAP_MENUBAR
TEXT WIN_FONT_MAPPER_FAMILY_TEXT\

XRC_RECT(24,36,68,14) "Family"
TEXT WIN_FONT_MAPPER_SIZE_TEXT\

XRC_RECT(180,36,58,14) "Size"
TEXT WIN_FONT_MAPPER_STYLE_TEXT XRC_RECT(264,36,67,14)\

"Style"
TEXT WIN_FONT_MAPPER_NATIVE_TEXT XRC_RECT(-9,180,348,14) ""
LISTBOX WIN_FONT_MAPPER_STYLE XRC_RECT(227,60,112,88)\

MULTIPLE
LISTBOX WIN_FONT_MAPPER_MAPPINGS XRC_RECT(-11,296,350,84)
GROUPBOX WIN_FONT_MAPPER_PORTABLE_ATTRS XRC_RECT\

(-33,12,372,144) "Portable Font Attributes" CENTER_JUST
GROUPBOX WIN_FONT_MAPPER_NATIVE_BOX XRC_RECT\

(-33,156,372,48) "Native Mapped Font" CENTER_JUST
GROUPBOX WIN_FONT_MAPPER_MAPPINGS_BOX XRC_RECT\

(-33,272,372,108) "Custom Font Mappings" CENTER_JUST
BUTTON WIN_FONT_MAPPER_CREATE_BUTTON\

#if XVTWS == MTFWS
XRC_RECT(36,117,204,25)\

#else
XRC_RECT(36,120,204,19)\

Resources and XRC

#endif
"Change Font Mapping"

LISTEDIT WIN_FONT_MAPPER_FAMILY XRC_RECT(24,60,144,95)
LISTEDIT WIN_FONT_MAPPER_SIZE XRC_RECT(180,60,72,95)

DIALOG APP_FONT_DLG XRC_RECT(69,115,360,160)\
"Application Font Dialog" MODAL

BUTTON APP_FONT_DLG_OK\
#if XVTWS == MTFWS

XRC_RECT(190,127,110,25)\
#else

XRC_RECT(190,130,110,19)\
#endif

"OK" DEFAULT
 BUTTON APP_FONT_DLG_CANCEL\
#if XVTWS == MTFWS

XRC_RECT(60,127,110,25)\
#else

XRC_RECT(60,130,110,19)\
#endif

"Cancel"
TEXT APP_FONT_DLG_TEXT1 XRC_RECT(10,10,68,14) "Family"
TEXT APP_FONT_DLG_TEXT2 XRC_RECT(160,10,58,14) "Size"
TEXT APP_FONT_DLG_TEXT3 XRC_RECT(240,8,67,14) "Style"
LISTBUTTON APP_FONT_DLG_FAMILY XRC_RECT(10,30,144,95)
LISTBUTTON APP_FONT_DLG_SIZE XRC_RECT(160,30,72,95)
LISTBOX APP_FONT_DLG_STYLE XRC_RECT(240,30,112,88) MULTIPLE
5-15

XVT Portability Toolkit Guide

5-16

Windows

6
WINDOWS

XVT-Design produces source code and resources that create, size
and locate windows. It also produces the event handling mechanism
for the window and all its controls. This chapter contains background
information about windows. If you create windows with XVT-Design,
you won’t need much of the information in this chapter.

Windows are the basic building blocks in XVT programs.
They provide an application “work area” for the user, presenting
information and allowing the user to interact with that information.
Windows are containers for graphics, font-based text, and controls,
and they can have an associated menubar.

γ

6-1

XVT provides five types of windows, as shown in Figure 6.1.
• Screen window
• Task window
• Top-level windows
• Child windows
• Modal windows

XVT Portability Toolkit Guide

6-2

Figure 6.1. Window relationships on different platforms. XVT/XM
has a floating task window the size of the menubar (not
shown here).

When the user (or the native windowing system) interacts with a
window, events are sent to the window’s event handler. The
behavior and flow of the entire application center on event handlers.
(This is also true of dialogs—see Chapter 7, Dialogs.)

Note: In XVT, several functions manipulate dialogs and controls as well
as windows. Consequently, some of the functions mentioned in this
chapter also appear in Chapter 7, Dialogs, and Chapter 8, Controls.

A

B

D C

B

C
D

Win32 Macintosh and Motif

A = Task window
B = Top level window and parent to D
C = Top level window
D = Child window to B (could be modal or non-modal)
6.1. Screen and Task Windows
On start-up, an XVT application creates two windows: a screen
window and a task window.

6.1.1. Screen Window
The screen window represents the physical display screen. Its
boundaries and dimensions reflect the pixel extent of the physical
screen. It receives no events.

Every XVT application has its own screen window.
Programmatically, it is represented by the macro SCREEN_WIN,
which is a valid XVT WINDOW that can be passed to many of the
XVT functions that require a WINDOW handle.

Windows

6.1.2. Task Window
The task window is a virtual window with its own event handler.
It represents the application, process, or logical task. On some
platforms, it is represented by a distinct visible object with its own
window coordinates. On other platforms, its representation
corresponds to the entire screen, and its coordinates are that of the
screen.

XVT-Design creates the task window for you. XVT-Design refers to it
as the “Application” module. Design places source code for the task
window and its event handler in a file which, by default, has the same
name as the project.

The task window has several purposes:
• It serves as a logical container for all top-level (document)

XVT windows. On some platforms, it also serves as a visible
(physical) container for top-level XVT windows (with an
exception made for “detached windows”).

• It provides a visible (physical) location for the application
menubar.

• It represents the application task and provides a place to
receive application events. An application is terminated by
closing the task window. The task window event handler

γ

6-3

receives an E_DESTROY event indicating the termination of
the application.

Note: For implementing your application’s task window event handler,
the concept of a task window is portable across all platforms.
However, its appearance and behavior with respect to the user is
platform-specific.

XVT Portability Toolkit Guide

6-4

Table 6.1 describes the characteristics of the task window on every
XVT platform:

1 The task window visibly contains top-level windows, or, if you
set the ATTR_WIN_PM_NO_TWIN attribute, the screen window
contains top-level windows.

2 A “ghost” window provides a visible location for the application
menu when there are no other windows with a visible menu.
(ATTR_X_DISPLAY_TASK_WIN controls whether the task window
menubar appears when there are no other menubar-carrying
windows visible on the screen.)
This “ghost” window should not be confused with the task window
itself. The primary (and only) thing you can do with a ghost
window is to set its menubar, and thus, the “ghost” window
provides one way for the user to close the application.

3 You can make the task window drawable (so that it accepts drawing

Task
window is

represented
by a distinct

visible
object

Task
window

corresponds
to the
entire
screen

Task
window
has a

“ghost”
window

Task
window

is
drawable

XVT/Mac — 3 — —

XVT/Win32 3 1 3 1 — 3 3

XVT/XM — 3 3 2 —
functions) by setting the ATTR_WIN_PM_DRAWABLE_TWIN attribute.

Table 6.1. Characteristics of the task window on each
supported XVT platform

The TASK_WIN constant represents the task window. As with
SCREEN_WIN, you can pass TASK_WIN as a parameter to many,
but not all, XVT functions that require a WINDOW parameter.

The task window event handler always receives the first and last
events for your XVT application: E_CREATE and E_DESTROY.
You can terminate an application by calling xvt_app_destroy, which
translates to xvt_vobj_destroy(TASK_WIN).

See Also: For more information about the task window, see TASK_WIN in the
XVT Portability Toolkit Reference.
For information about attributes that affect the task window, see the
XVT Platform-Specific Books.

Windows

6.2. Top-level, Child, and Modal Windows

6.2.1. Top-level Windows
Top-level windows—also called regular or document windows—
contain the application’s controls and graphics (see Figure 6.2 and
Figure 6.3). The application creates them as needed. Top-level
windows are independent of one another.

Top-level windows can possess the following window decorations:
border scrollbars, titlebars, and window resizing and closing
controls. You can specify all of these attributes when you create the
window. Top-level windows can also have a menubar associated
with them.

vertical
scrollbar

close box title bar iconify box zoom box

client
area
6-5

Figure 6.2. Top-level window on MS-Windows
horizontal scrollbar

XVT Portability Toolkit Guide

6-6

Figure 6.3. Top-level window on Motif

6.2.2. Child Windows
Child windows can be nested within top-level windows, or within
other child windows; they move with their parent window and are
clipped to the parent’s boundaries. Only child windows can be
nested within another window. Like top-level windows, child
windows can have scrollbars. They can have a plain border, single

title barclose box zoom boxiconify box

horizontal scrollbar

client
area vertical

scrollbar
border, or invisible border.

See Also: For more information about child windows, see section 6.7.

6.2.3. Modal Windows
The purpose of a modal window is to block the users’ interaction
with any other application window except the modal window itself.
Modal windows have a different look-and-feel on each platform,
because they conform with the required style of that platform’s
window manager. Like child windows, modal windows are
associated with a parent window. The important difference between
modal windows and other types of windows is that modal windows
must be answered before the application can change its state. It is the
responsibility of the application to destroy a modal window after the
user responds to the choices offered in that window.

See Also: For more information about modal windows, see section 6.3.3.4.

Windows

6.3. XVT WINDOWs and Window Types
To refer to a specific XVT window, you’ll use a descriptor of type
WINDOW:

typedef long WINDOW;

Caution: Direct information about the contents of a window descriptor is not
available to your application. Don’t assume that a WINDOW is a
window pointer or window handle. Operations that are allowed on
windows are performed by XVT functions that take a WINDOW as
one of their arguments.

6.3.1. NULL_WIN Symbol
When you have to assign or compare an object of type WINDOW to
NULL, use the symbol NULL_WIN like this:

if (win == NULL_WIN)
...

6.3.2. WIN_TYPE Data Type
The data type WIN_TYPE is used whenever the type of window must
be specified, such as when a window is created:
typedef enum { /* type of window */

W_DOC, /* document window */
W_PLAIN, /* single (plain) border window */
6-7

W_DBL, /* double border window */
W_NO_BORDER, /* window with no border */
W_MODAL, /* modal document window */
W_SCREEN, /* not to be used to create windows */
W_TASK, /* not to be used to create windows */
... /* other WINDOW types (dialogs,

controls) */
} WIN_TYPE;

Figure 6.4. Single- and double-border windows

This is a
single
border
window.

This is a
double
border
window.

XVT Portability Toolkit Guide

6-8

6.3.3. Window Types
This section explains five types of windows: W_DOC, W_PLAIN,
W_DBL, W_NO_BORDER, and W_MODAL, and defines the client area of
a window.

6.3.3.1. W_DOC (Top-level Windows)
In this Guide, W_DOC windows are usually referred to as regular,
document, or top-level windows. They can have border scrollbars,
titlebars, and window resizing and closing controls. XVT top-level
windows can also have a menubar associated with them. When you
create a window, you can specify all of these window attributes
(sometimes called window decorations). However, once a window
has been created, these attributes cannot be changed.

Note: The parent of a W_DOC window is always either TASK_WIN or
SCREEN_WIN. W_DOC windows are always top-level windows;
they cannot be child windows.

6.3.3.2. W_PLAIN and W_DBL
W_PLAIN and W_DBL are simple rectangular windows that can’t
possess border controls or decorations. If a native GUI platform has
no concept of a double-bordered window, then these two window
types look the same.

6.3.3.3. W_NO_BORDER
The type W_NO_BORDER is for a window without any border at all.

Such a window can be created only if it is a child window. (Child
windows can only be of type W_NO_BORDER or W_PLAIN; they are
explained more fully later in this chapter.)

Tip: To find out a window’s type:

Call xvt_vobj_get_type.

You can receive as a return value the window type W_PRINT, which
XVT uses to indicate a print window.

6.3.3.4. W_MODAL (Modal Windows)
A modal window prevents user interaction with any other window
of an application (including the parent window which may be
modal itself) until some user-initiated action causes the modal
window to be dismissed. When a user initiates a request for
dismissal, the application must destroy the modal window by calling

Windows

xvt_vobj_destroy. After a modal window is destroyed, focus returns to
the window which previously had focus. The Portability Toolkit also
preserves the order of a modal chain (a stack of modal windows or
dialogs).

Note: Modal windows do not support menubars.

See Also: For more information on menubars and their relationship to
windows, see Chapter 9, Menus.

Modal Window Look-and-Feel

Modal windows are implemented using the native object best suited
to providing modality on each platform. A W_MODAL window may
have characteristics of a top-level window, a child window, or a
dialog. Moreover, the look-and-feel of this object is platform-
specific—it will have the physical appearance most appropriate for
modality on a particular platform. Modal windows follow native
look-and-feel guidelines for decorations (borders, system menus,
etc.) and stacking order.

Parent Window

The following types of windows are valid parents for a modal
window:

• Screen window (W_SCREEN)
• Task window (W_TASK)
6-9

• Top-level window (W_DOC, W_DBL, W_PLAIN)
• Dialog (WD_MODAL, WD_MODELESS)
• Another different modal window (W_MODAL)

The parent window of a modal window is returned by calling
xvt_vobj_get_parent. If the parent is destroyed, the modal window is
also destroyed automatically. Modal windows with the screen
window as the parent are destroyed automatically when the task
window is destroyed (as with top-level windows and dialogs).

Creation Flags

The W_MODAL window supports the following creation flags:
• WSF_DISABLED
• WSF_INVISIBLE
• WSF_PLACE_EXACT

All other WSF_* flags produce runtime warnings.

XVT Portability Toolkit Guide

6-10

Creation Rectangle

The creation rectangle specifies the width and height for the modal
window. The modal window follows native look-and-feel guidelines
for position with respect to its parent. The creation flag,
WSF_PLACE_EXACT, (used only for modal windows) insures that the
modal window respects the top and left fields of the creation rectangle
(RCT) structure. With this flag, the creation position is specified
relative to the coordinate system of the parent window.

Implementation Note: On XVT/Win32, the position specified by the creation rectangle is
respected even when the creation flag WSF_PLACE_EXACT is not
used.

Modal Window Behavior

A modal window’s enabled state does not depend on the state of its
parent, unlike other parent/child relationships. A modal window
cannot be created from an invisible parent, and the parent of a modal
window cannot be made invisible (by calling xvt_vobj_set_visible)
while the modal window exists. An error results from either case.

E_CHAR character events are delivered to the window handlers of
modal windows. Your application should process these character
events as it would for any other top-level window. Your options for
keyboard navigation (inside modal windows) are: 1) use the XVT
navigation object (described in section 6.6 on page 6-14), and let it
automatically provide keyboard navigation for your modal
windows, or 2) implement your own navigation mechanism.
The portable attribute ATTR_PROPAGATE_NAV_CHARS controls the
delivery of those character events necessary for navigation to
windows (including modal windows). This attribute is automatically
set if you have chosen to use the XVT navigation object.

XVT Portability Toolkit functions that accept document windows as
arguments will also accept modal windows. You can create all XVT
controls, text edit objects, and custom controls in modal windows.
Support is provided for drawing in modal windows as well (for
example, E_UPDATE events and use of drawing tools
DRAW_CTOOLS). Functions that return top-level windows as
arguments, including any window enumeration functions, can also
return modal windows.

Note: If you call xvt_vobj_move to move the parent of a modal window,
the modal window does not move relative to the screen window.

Windows

6.3.4. Client Area
All windows possess a client area, which is the inner rectangular
area of the window that is used by the application.

All drawing operations are performed in the client area. In addition,
controls can be placed in the client area. The dimensions of the client
area are those specified for the window when it is created, or when
it is resized via xvt_vobj_move.

The function xvt_vobj_get_client_rect always returns the dimensions of
a window’s client area, with the origin at (0,0). xvt_vobj_get_outer_rect
returns the dimensions of the entire window, including window
decorations such as the titlebar and scrollbars and the top-left
coordinates relative to the parent window.

6.4. Creating Windows
You can create XVT windows in three different ways, based on the
needs of your application. In all cases, a WINDOW is returned from
each creation. This value is your reference to the new window. You
can create as many windows as your application needs, within the
limits of each native GUI windowing system.

XVT-Design can automatically create windows. See XVT-Design
Manual for more details.γ
6-11

When specifying the size of a window initially, you can use the
XVT_MAX_WINDOW_RECT constant to create a top-level window that
occupies its entire container.

6.4.1. Dynamic Windows
Dynamic windows are created by your program, without any need
for external resource definitions.

Tip: To dynamically create windows at any time:
Call xvt_win_create.

All of the window’s attributes (initial size, title text, menu resource
ID, parent WINDOW, attribute flags, event handler, and application
data) are specified as arguments to xvt_win_create.

See Also: For more information about creating windows, see section 3.3 in
Chapter 3, GUI Elements.

XVT Portability Toolkit Guide

6-12

6.4.2. Resource-based Windows
Resource-based windows are created from external resource
definitions. To create a resource-based window, you specify the
window’s definition in XVT’s XVT Resource Compiler
(XRC). The application accesses it at runtime by means of the
object’s resource ID. The xvt_win_create_res function then creates the
window.

You can create a resource-based window in XVT-Design.
XVT-Design assigns a symbolic identifier, which corresponds to a
resource ID, to the window. Functions can access the window by its
symbolic identifier.

Resource-based windows are useful when the definition of a
window is unknown or changeable at compilation time. You can
optionally define arbitrary data (USERDATA) for the window. This
USERDATA can then be called by xvt_res_get_win_data.

See Also: For details about xvt_res_get_win_data, see the XVT Portability Toolkit
Reference.
For information about the XRC syntax for creating windows, see
section 3.3.1 in Chapter 3, GUI Elements.

6.4.3. Structure-based Windows
Structure-based windows are created from an array of WIN_DEF

γ

data structures that are passed to xvt_win_create_def. The
xvt_win_create_def function allows you to create a container
and all of its contained components in a single call.

See Also: The WIN_DEF structure is common to windows, dialogs, and
controls. For details, see section 3.3.2 in Chapter 3, GUI Elements.

Windows

6.5. Replacing and Retrieving Window Event
Handlers

Whenever you create an XVT task, top-level, or child window, you
must specify an event handler for it. Later, you can substitute a new
event handler for the window, using xvt_win_set_handler. In addition,
you can retrieve a window’s current event handler via
xvt_win_get_handler.

For every window or dialog that you create, XVT-Design
automatically defines the event handler function and supplies its
name to the container’s creation function. XVT-Design also creates
an event handler for the task window.

See Also: For more information about event handling for windows, see section
3.4 in Chapter 3, GUI Elements.

γ

6-13

XVT Portability Toolkit Guide

6-14

6.6. Keyboard Navigation in Windows
Keyboard navigation is the use of keyboard input, in lieu of mouse
pointing and clicking, to interact with GUI objects. Generally, native
look-and-feel for keyboard navigation includes using the Tab key
and Shift-Tab key (back-tab) to traverse through a list of controls.
Alternatively, the user may type character keys (associated with
mnemonic characters) to select an object directly. A mnemonic
character is preceded by a tilde (~) in the title text and displayed with
an underline to users. Groups of controls (such as radio buttons) may
be traversed with Arrow keys.

Unlike XVT dialogs which automatically provide keyboard
navigation to users, XVT windows require special handling to
implement keyboard navigation. The XVT_NAV navigation object
encapsulates the navigation list of controls, child windows, and
custom controls for a particular window. The navigation object
allows you to specify the navigation order for your application’s
windows. Any control mnemonic character set in the control’s title
will be processed automatically on platforms on which control
mnemonics are supported in native look-and-feel (XVT/Win32).

Tip: To create a navigation object for a specified WINDOW:
Call xvt_nav_create with a valid SLIST of XVT GUI objects.

Tip: To destroy a navigation object:
Call xvt_nav_destroy.
Tip: To retrieve the navigation object associated with a WINDOW:
Call xvt_win_get_nav.

GUI objects may be added or removed from and existing navigation
object by calling xvt_nav_add_win or xvt_nav_rem_win, respectively.
xvt_nav_list_wins provides a list of GUI components in a navigation
object.

XVT-Design automatically creates the XVT_NAV object for you when
you enable the Navigation check box using XVT-Design’s window
attribute editor.

See Also: For detailed information about the xvt_nav_* functions, refer to their
descriptions in the XVT Portability Toolkit Reference.

γ

Windows

6.7. Working with Child Windows
A child window is one that is hierarchically related to a parent
window. Child windows have several characteristics in common:

• Is a full-fledged window, with its own client area, coordinate
system, drawing tools, clipping rectangle, etc.

• Is always clipped to the boundaries of its client area
• Can have children of its own
• Can receive any window-oriented events, such as

E_MOUSE_MOVE or E_UPDATE

• Is fixed relative to the client area of its parent unless changed
by a call to xvt_vobj_move (if its parent moves, the child
window moves also)

• Is unaffected by resizing of its parent (however, although its
position and size aren’t changed, how much of it can be seen
does change)

• Is not subject to being moved, resized, or closed by the user
(child windows do not have resizing and closing controls or
titlebars)

The only valid window types for child windows are W_PLAIN,
W_MODAL, and W_NO_BORDER (W_NO_BORDER is exclusively
reserved for child windows).
6-15

6.7.1. Benefits of Child Windows
XVT child windows allow you to nest windows within windows,
and to establish a hierarchical model for defining the relationships
between windows. Neither would be possible with top-level
windows only, because they are independent of one another. Other
than the fact that top-level windows generally are bounded by the
client area of the task window, no top-level window is nested within
any other top-level window.

When child windows are created, their positioning rectangle is
relative to the client area of their parent window. In addition, child
windows move synchronously with their parent, and are clipped to
their parent’s boundaries.

A child window inherits whether it is visible and enabled from its
parent. If the parent is disabled, then all child windows within that
parent are disabled. However, if a child is disabled, then all mouse
events from the child window are transformed into the parent’s
coordinate system and sent to the parent window’s event handler.

XVT Portability Toolkit Guide

6-16

6.7.2. Determining Parent Windows
Tip: To determine the parent of any window:

Call xvt_vobj_get_parent.

Note: If called on a top-level window, xvt_vobj_get_parent returns TASK_WIN.
It returns SCREEN_WIN as the parent of the task window, and returns
NULL_WIN as the parent of SCREEN_WIN.

6.7.3. Listing Window Descendants
Tip: To list the titles and window handles of controls, windows, and

dialogs (only if W_SCREEN is parent) which have a specified parent
WINDOW:

Call xvt_win_list_wins.

xvt_win_list_wins returns an SLIST in which each SLIST_ELT element
contains a WINDOW handle and a window title string (if appropriate
for the window type). xvt_win_list_wins is
non-recursive–in other words, it lists only the immediate
descendants of the container in the order of their creation.
xvt_win_list_wins does not return text edit objects because they do not
possess WINDOW handles.

See Also: xvt_scr_list_wins in the XVT Portability Toolkit Reference for more
information about this function which lists all top-level windows
and dialogs in an XVT application.
6.7.4. Enumerating Windows
Tip: To apply a function to the list of controls, child windows, and

dialogs (only if W_SCREEN is parent) that have a specified parent
WINDOW:

Call xvt_win_enum_wins.

Your application-supplied callback function is called once for each
window in the descendant list with the window handle (WINDOW)
and a pointer to application data passed as arguments. You should
avoid creating new descendant windows or destroying existing
(enumerated) descendant windows during the enumeration process.

The type XVT_ENUM_CHILDREN prototypes the callback function
that your application passes to xvt_win_enum_wins. Be careful not to
cause inadvertent recursion when writing this callback function.

Windows

Example: This code demonstrates the use of xvt_win_enum_wins to set
application data for controls and later free the same data and destroy
the controls:

BOOLEAN XVT_CALLCONV1 create_app_data (WINDOW win,
long data)

{
int id = xvt_ctl_get_id(win);
char *ctl_data;

ctl_data = (char *) xvt_mem_alloc(30);

xvt_str_sprintf(ctl_data, (char *)data, id);

xvt_vobj_set_data(ctl_win,(long)ctl_data);

return TRUE;
}

BOOLEAN XVT_CALLCONV1 free_app_data (WINDOW win,
long data)

{
DATA_PTR ctl_data =

(DATA_PTR)xvt_vobj_get_data(win);

NOREF(data);

if (ctl_data != NULL)
xvt_mem_free(ctl_data);

xvt_vobj_destroy(win);

return TRUE;
6-17

}

XVT Portability Toolkit Guide

6-18

long XVT_CALLCONV1 win_eh(WINDOW win, EVENT *ep)
{

switch (ep->type) {
...
case E_CREATE:

...
xvt_win_enum_wins(win, create_app_data,

(long) “Control ID = %d”,
NULL);

...
break;

case E_CONTROL:
switch (ep->v.ctl.id) {

...
case CLOSE_BUTTON:

xvt_win_enum_wins(win, free_app_data,
NULL, NULL);

...
break;

...
}
break;

...
}
...

}

6.8. Associating Application Data with Windows
Frequently, you’ll want to associate your own data with a window.
Doing so allows you to keep window-related data with the window,
rather than maintaining it somewhere else. In a word processor, for
example, the application data might be the text of the document and
all of its related attributes.
Tip: To associate data with a window:
Use the function xvt_vobj_set_data to set a long word that XVT
keeps with each window.

Tip: To retrieve the value:
Call xvt_vobj_get_data.

Tip: You can also set a window’s application data value as part of the
window creation function call. However, it is better programming
style to create and attach window-specific data in the window’s
event handler, in response to the E_CREATE event. XVT recommends
that you perform all window-specific initializations using this
approach.

Because each window has its own event handler, attaching
application data to a window is an efficient way to program in XVT.

Windows

Each time an event is sent to an event handler, the window’s
WINDOW is also sent. You can then call xvt_vobj_get_data at the top of
the event handler, making the data easily accessible to the
application.

Note: XVT recommends that you perform window-specific termination
operations in response to the E_DESTROY event, which might
include freeing data structures previously attached to the window’s
application data field, as well as those of its controls. Furthermore,
XVT recommends that you reset the application data fields to zero
in case they are referenced again later in the application. Once a
window is destroyed, allocated memory that was referenced by the
window’s application data field can’t be retrieved.

Usually the data is a pointer to a structure, in which case you’ll have
to cast the argument to xvt_vobj_set_data and the return value from
xvt_vobj_get_data. To prevent a compiler warning, use the macro
PTR_LONG to cast a pointer to a long.

6.9. Updating Windows
This section explains drawing in windows and how clipping is
implemented. Other functions, such as determining parent windows,
window dimensions, and front-most windows, are common to
multiple GUI objects.

See Also: For more information about common functions, see section 3.5 in
6-19

Chapter 3, GUI Elements.

6.9.1. Drawing
It’s a good idea to postpone drawing in a window until an E_UPDATE
event occurs, because both initial drawing and repair of damage can
then be handled together.

Tip: To draw in a window:

1. Revise whatever internal data structures you’re maintaining.

2. Call xvt_dwin_invalidate_rect.

This tells XVT that a part of the window has to be updated.
Later, XVT generates an appropriate E_UPDATE event.

Of course, sometimes you have to draw in real time, for instance
when the user is dragging a shape in a drawing program. In this case,
the drawing functions should be executed immediately. When an
E_UPDATE does occur, you can speed up output by only drawing

XVT Portability Toolkit Guide

6-20

shapes and text that are in the update rectangle (which is supplied in
the E_UPDATE event).

Tip: To force all pending E_UPDATE events to be processed immediately
(resulting in one or more calls to your event handler function):

Call xvt_dwin_update.

You should make this call just prior to calling xvt_dwin_scroll_rect.

6.9.2. Clipping
Anything your application draws in a window is clipped to the client
area, so that nothing spills out into border areas or decorations. The
default clipping rectangle of a window is its client area.

Tip: To restrict the drawing area to just part of the client area:
Call xvt_dwin_set_clip.

Tip: To determine the existing clipping rectangle:

Call xvt_dwin_get_clip.

The clipping rectangle you set for a window remains until you
change it with xvt_dwin_set_clip. During an update, XVT clips all
drawing operations to the intersection of the update area and the
clipping rectangle. If you accidentally leave the clipping area too
small, you may not update as much as you should during an update.

Tip: To be safe, when you restrict the clipping rectangle with

6

xvt_dwin_set_clip, be sure to restore it as soon as possible.
Do this with a NULL second argument to xvt_dwin_set_clip.

.10. Window Titles
Document windows and modal windows have a title, which is
originally set when the window is created. You can change the title
at any time by calling xvt_vobj_set_title. The function
xvt_win_set_doc_title is similar, but it ensures that the title obeys
appropriate user interface guidelines for the underlying toolkit.

You can retrieve the title of a window with xvt_vobj_get_title.
xvt_vobj_get_title is also used to get the text of dialogs and controls.

Windows

6.11. Window Scrollbars and Scrolling
The WSF_HSCROLL and WSF_VSCROLL flags, specified during
window creation, indicate whether the window has horizontal and/
or vertical scrollbars. Scrollbars have no default range, so you need
to set the ranges yourself.

Tip: To set scrollbar ranges for a document window:

Call xvt_sbar_set_range.

Once the range of a scrollbar is set, you should set its proportion
indicator.

Tip: To set a scrollbar’s proportion:

Call xvt_sbar_set_proportion.

The indicator shows the amount of data that is visible in a window,
as compared to the total amount of data.

Example: For example, if your document contains 500 lines, and your window
can display 50 lines, then the scrollbar range would be 0 to 500, and
the proportion would be 50.

See Also: For more information about scrolling, see Chapter 13, Scrolling.

6.11.1. Proportional Scrollbars
Proportional scrollbars are not supported on all platforms, but you
6-21

don’t have to think about this when writing an XVT program. If you
set the range and proportions correctly, the scrollbars behave
appropriately on all platforms. On platforms without proportional
scrollbars, the call to xvt_sbar_set_proportion simply reduces
the scrollbar range, which has the desired effect.

6.11.2. Scrolling
When the user operates a window’s scrollbar, XVT generates the
appropriate event. In responding to this event, your application
usually updates the window, possibly by scrolling part of it with
xvt_dwin_scroll_rect. It should then change the position of the thumb by
calling xvt_sbar_set_pos. The thumb indicates the position of the
window’s contents relative to the document as a whole.

Note: Scrollbars do not automatically perform scrolling operations within
the client area. Scrollbars only notify your window’s event handler
that they were manipulated. It is up to you to respond to the scrollbar
events.

XVT Portability Toolkit Guide

6-22

6.12. Other Window Operations
Tip: To get a list of all windows (top-level as well as dialogs):

Call xvt_scr_list_wins.

This function returns the window titles and WINDOW descriptors in
the form of an SLIST. (For more information about SLIST, see section
B.1 in Appendix B, Utilities.)

Implementation Note: The xvt_scr_list_wins function does not return SCREEN_WIN
or TASK_WIN in its list of windows. (On XVT/Win32, TASK_WIN will
be listed if it was created as a drawable window.)

Tip: To determine a WINDOW’s type:
Call xvt_vobj_get_type.

Tip: To get the top-level or modal window that has keyboard focus or
contains a child window with focus:

Call xvt_scr_get_focus_topwin.

This function is useful for getting the top-level container window,
for operations such as menu changes.

Tip: To draw a borderless client-area-sized rectangle in a specified
window, using the specified COLOR argument:

Use xvt_dwin_clear.

The xvt_dwin_clear function can also quickly set the background color

of windows. (Dialogs cannot be referenced by this function, since
the client area of a dialog is not drawable in XVT.)

Windows

6.13. Window Manipulation Functions
Table 6.2 summarizes the XVT functions that you can use to
manipulate windows.

These functions also work with dialogs or controls. However, their
behavior may differ when used with them.

XVT Function Effect on Task Window
Effect on

Top-level and
Modal

Windows

Effect on Child
Window

xvt_vobj_set_title Sets the title text of TASK_WIN Sets the title of
the window

Ignored

xvt_vobj_get_title Gets the title of TASK_WIN Gets the window
title

Returns NULL

xvt_vobj_set_enabled Not allowed Disables or
enables specified
window and all
child WINDOWs

Disables or
enables specified
window and child
WINDOWs

xvt_vobj_set_visible Not allowed Shows or hides
specified window
and child
WINDOWs

Shows or hides
specified window
and child
WINDOWs

xvt_vobj_get_client_rect Gets client rectangle of Gets client Gets client
6-23

TASK_WIN rectangle of
specified window

rectangle of
specified window

xvt_vobj_get_outer_rect Gets outer rectangle of
TASK_WIN

Gets outer
rectangle of
specified window

Gets outer
rectangle of
specified window

xvt_vobj_get_parent Returns SCREEN_WIN
(xvt_vobj_get_parent on
SCREEN_WIN returns
NULL_WIN)

Returns
TASK_WIN
(or parent of
modal window)

Returns parent
WINDOW

xvt_vobj_move Moves/resizes TASK_WIN
(if applicable)

Moves/resizes
specified window

Moves/resizes
specified window

XVT Portability Toolkit Guide

6-24

xvt_vobj_destroy Terminates application (all
windows) via E_DESTROY to
task event handler

Terminates
window (and all
child windows
and contained
modal windows)
via E_DESTROY to
window’s event
handler

Terminates
window (and all
child windows)
via E_DESTROY to
window’s event
handler

xvt_vobj_raise Raises TASK_WIN to the top
(if applicable)

Raises specified
window to the top

Raises specified
window to the top

xvt_vobj_get_type Returns W_TASK Returns
WIN_TYPE of
window (W_DOC,
W_PLAIN, W_DBL,
W_MODAL)

Returns
WIN_TYPE of child
window
(W_PLAIN or
W_NO_BORDER)

xvt_vobj_set_data Sets app data Sets app data Sets app data

xvt_vobj_get_data Returns app data Returns app data Returns app data

xvt_scr_set_focus_vobj Sets keyboard focus to
TASK_WIN (only on
XVT/Win32 when
ATTR_WIN_PM_DRAWABLE_TW
IN is set)

Sets keyboard
focus to specified
window

Sets keyboard
focus to specified
window

xvt_s

xvt_s

xvt_w

xvt_w

XVT Function Effect on Task Window
Effect on

Top-level and
Modal

Windows

Effect on Child
Window
cr_get_focus_vobj Returns TASK_WIN if it has
focus (only on
XVT/Win32 when
ATTR_WIN_PM_DRAWABLE_TW
IN is set)

Returns top-level
window if it has
the focus

Returns child
window or
control if it has
the focus

cr_get_focus_topwin N/A Gets the top-level
window with
focus (the active
window)

N/A

in_set_handler Sets the event handler for
TASK_WIN

Sets the event
handler for top-
level window

Sets the event
handler for child
window

in_get_handler Gets the event handler for
TASK_WIN

Gets the event
handler for top-
level window

Gets the event
handler for child
window

Windows

xvt_sbar_set_range Sets scrollbar range for
TASK_WIN border scrollbar
(XVT/Win32 only)

Sets scrollbar
range for top-
level window
border scrollbar 1

Sets scrollbar
range for top-
level window
border scrollbar

xvt_sbar_get_range Gets scrollbar range for
TASK_WIN border scrollbar
(XVT/Win32 only)

Gets scrollbar
range for top-
level window
border scrollbar 1

Gets scrollbar
range for child
window border
scrollbar

xvt_sbar_set_pos Sets scrollbar position for
TASK_WIN border scrollbar
(XVT/Win32 only)

Sets scrollbar
position for top-
level window
border scrollbar 1

Sets scrollbar
position for child
window border
scrollbar

xvt_sbar_get_pos Gets scrollbar position for
TASK_WIN border scrollbar
(XVT/Win32 only)

Gets scrollbar
position for top-
level window
border scrollbar 1

Gets scrollbar
position for child
window border
scrollbar

xvt_sbar_set_proportion Sets scrollbar proportion
indicator for TASK_WIN
border scrollbar
(XVT/Win32 only)

Sets scrollbar
proportion
indicator for top-
level window

1

Sets scrollbar
proportion
indicator for child
window border

XVT Function Effect on Task Window
Effect on

Top-level and
Modal

Windows

Effect on Child
Window
6-25

1 N/A for modal or top-level plain windows.

Table 6.2. Window manipulation functions

Caution: If any of the above windows are created without scrollbars, and you
call xvt_sbar_set_* or xvt_sbar_get_*, XVT issues an error.

See Also: For more information about dialogs and controls, see Chapter 7,
Dialogs, and Chapter 8, Controls.

border scrollbar scrollbar

xvt_sbar_get_proportion Gets scrollbar proportion
indicator for TASK_WIN
border scrollbar
(XVT/Win32 only)

Gets scrollbar
proportion
indicator for top-
level window
border scrollbar 1

Gets scrollbar
proportion
indicator for child
window border
scrollbar

XVT Portability Toolkit Guide

6-26

Dialogs

7
DIALOGS

XVT dialogs (sometimes referred to as dialog boxes), are similar to
XVT windows. Typically, dialogs serve as containers for controls,
and provide a means for presenting selection options to the user.
Most native GUI platforms have some kind of dialog manager,
which facilitates keyboard traversal of controls.

7.1. Modal and Modeless Dialogs
XVT provides two types of dialogs, modal and modeless. Dialog
modality determines whether the application is frozen until the user
responds to the dialog (see Figure 7.1). Dialogs are specified by
using the WIN_TYPE enumeration:

typedef enum e_win_type { /* type of window */
7-1

...
WD_MODAL, /* modal dialog */
WD_MODELESS, /* modeless dialog */
...

} WIN_TYPE;

Type is specified when the dialog is created, and can’t be changed.
A dialog’s type determines its behavior.

XVT Portability Toolkit Guide

7-2

Figure 7.1. Modal and modeless dialogs

Modal Dialogs

Modal dialogs freeze an application until the user responds. In other
words, a modal dialog forces the user to respond to it; once the user
response has been received and acted upon, you must destroy the
dialog by calling xvt_vobj_destroy. As you might expect, you should
use modal dialogs only when the user must respond before the
application can continue.

Tip: XVT provides several predefined modal dialogs for frequently
performed operations (see section 7.3 on page 7-6).
Example: You would use a modal dialog to ask if the user wants to save the
changes made to a document before closing the window. Because
this question must be answered before the application can continue,
it makes sense to have the dialog containing this question “lock” the
application until the dialog is responded to and, finally, dismissed.

The response to a modal dialog is almost always an E_CONTROL
event, which tells the handler that the user has finished working
with the dialog. Often, this is a push button control event, perhaps
signaling a user response to this dialog. Once such an event has been
processed, the dialog event handler must call xvt_vobj_destroy,
producing an E_DESTROY event and thus destroying the dialog.
Only then does the call that created the dialog (either xvt_dlg_create_def
or xvt_dlg_create_res) return
to the application.

Tip: When you invoke a window or a modeless dialog from a modal
dialog, you should immediately dismiss the modal dialog so that the

Dialogs

newly created window or modeless dialog can receive events and be
useful.

Example: The following code shows how you could structure an application to
define, create, and manage a modal dialog. This dialog contains a
push button which, when pressed, signals the application that the
user has responded, and to destroy the dialog. (You could also use
this code for modeless dialogs, but the application would continue to
operate after the dialog creation function returns.)
...
/* Create modal dialog using resource-based definition */

xvt_dlg_create_res (WD_MODAL, OUR_DIALOG_ID, EM_ALL,
a_dialog_eh, 0L);

/* The user responded; the application can continue. */
...

long XVT_CALLCONV1 a_dialog_eh (WINDOW dlg,
EVENT *event_p)

{
switch (event_p->type) {
/* If user pressed OK pushbutton, close the dialog. */
case E_CONTROL:

if (event_p->v.ctl.id == DLG_OK)
xvt_vobj_destroy (dlg);

break;

/* If user operates close control on the dialog frame,
close the dialog. */
7-3

case E_CLOSE:
xvt_vobj_destroy (dlg);
break;

...
}
return (0L);

}

Often your dialogs will be more complex, but their basic program
structure should follow the approach shown above.

See Also: For more information about E_CONTROL events, see section 4.5.4 on
page 4-25.

XVT Portability Toolkit Guide

7-4

Modeless Dialogs

Modeless dialogs behave much more like windows. The function
called to create a modeless dialog (either xvt_dlg_create_def or
xvt_dlg_create_res) immediately returns to the application without
waiting for a user response to the dialog. The application can
continue to operate, processing and generating events in a normal
manner. The modeless dialog remains on the screen until
xvt_vobj_destroy is called to destroy it.

As they do with modal dialogs, control-related events come into the
modeless dialog’s event handler in the form of E_CONTROL events.
Usually, a particular control event (for example, the pressing of a
push button), signals the event handler that the user has responded
to this dialog. The states of any of the relevant controls in the
dialog can be queried, processed, and/or saved, and then
xvt_vobj_destroy can be called to destroy the modeless dialog.

7.2. Defining and Creating Dialogs
You can define and create XVT dialogs in two ways: as resource-
based dialogs or in-memory structures.

Caution: As a general guideline, do not attempt to create a dialog while
processing an E_UPDATE event in a window event handler. Some
native GUI windowing systems cause XVT to generate E_UPDATE
events when a dialog is destroyed, so that the contents of a
previously obscured window can be repaired. On these systems,
creating a dialog while processing an E_UPDATE event can cause an

E_UPDATE event to be recursively generated to the window event
handler, causing the dialog to be created again, and so on. By
default, XVT prevents you from making this mistake, although you
can explicitly override this restriction by using the attribute
ATTR_SUPPRESS_UPDATE_CHK.

A similar problem can occur when creating dialogs during the
processing of E_FOCUS events. XVT has no restriction for this case,
so you should take care when attempting to do this.

7.2.1. Resource-based Dialogs
Tip: To create a resource-based dialog:

 Call xvt_dlg_create_res.

Dialogs

In XRC, dialogs are defined in terms of both their own attributes
(resource ID, size, title, modality, etc.), and the individual controls
that they contain. By referring to the dialog’s resource ID, you can
create a dialog simply by calling xvt_res_get_dialog. You can optionally
define arbitrary data (USERDATA) for the dialog. This USERDATA can
then be called by xvt_res_get_dlg_data.

See Also: For more information, see section 3.3.1 in Chapter 3, GUI Elements.
Also see xvt_res_get_dlg_data in the XVT Portability Toolkit Reference.

7.2.2. In-memory Structures
You can use in-memory structures to define and create dialogs, as
well as windows.

Tip: To define an in-memory dialog and its controls:

Call xvt_dlg_create_def in conjunction with an array of WIN_DEF
structures.

No matter how the dialog is defined and created, you should
structure your application to respond to events by means of the
dialog’s event handler. In XVT, you cannot add controls to dialogs
after creation, so you should include all of the needed controls either
in the XRC file or as objects in the WIN_DEF array passed to
xvt_dlg_create_def.

Tip: A way of getting around this restriction is to create some controls as
7-5

initially invisible, then make them visible as needed. This simulates
adding new controls to dialogs.

See Also: For more details on the WIN_DEF structure and its use, see section
3.3.2 in Chapter 3, GUI Elements.

Modal versus Modeless Dialogs

For modal dialogs (of WIN_TYPE WD_MODAL), the creation function
returns only when the dialog is destroyed (via xvt_vobj_destroy). For
modeless dialogs (of WIN_TYPE WD_MODELESS), creation functions
return immediately after the dialog has been created, and the
application program continues to function in an event-driven
manner. As with modal dialogs, modeless dialogs are removed when
xvt_vobj_destroy is called for the dialog.

For modeless dialogs, dialog creation functions return the dialog’s
WINDOW. For modal dialogs, the WINDOW is also returned, but
because the function waits until the modal dialog is destroyed before
returning, the WINDOW is not valid and should not be used.

XVT Portability Toolkit Guide

7-6

Note: Some native GUI windowing systems can provide a close dialog
control on the dialog’s frame; if the user selects this frame control,
an E_CLOSE event is generated. However, xvt_vobj_destroy must still be
called for the dialog to be destroyed.

7.3. Predefined Dialogs
XVT supports several common dialog designs. You can use them as
follows:

If you want to: Use this function:

Ask the user a yes or no question xvt_dm_post_ask
Allow the user to choose a color xvt_dm_post_color_sel
Allow the user to change xvt_dm_post_ctools_sel
drawing tools
Put up a note or error alert xvt_dm_post_error,

xvt_dm_post_note, or
xvt_dm_post_warning

Display a set of font alternatives xvt_dm_post_font_sel
Put up a note and terminate xvt_dm_post_fatal_exit
the application
Get a string typed by the user xvt_dm_post_string_prompt
Put up an About box xvt_dm_post_about_box
Prompt the user for a filename xvt_dm_post_file_open or
for input or output xvt_dm_post_file_save
Note: The last two dialog boxes (open and save) let the user scan
filenames, change directories, and switch drives.

Dialogs

7.4. Dialog Manipulation Functions
XVT functions that manipulate dialogs often perform similar
operations on windows and, in some cases, on controls. To use
these functions, you need the WINDOW for the dialog of interest.
This is always available within the dialog’s event handler.
Also, for modeless dialogs, the dialog creation functions return
a valid WINDOW.

Table 7.1 shows the dialog manipulation functions.

XVT Function Effect on Dialog
xvt_vobj_set_title Sets dialog title (not displayed for some dialogs

on some platforms)

xvt_vobj_get_title Returns title of dialog (even if it is not
displayed)

xvt_vobj_set_enabled Disables (or hides) specified dialog

xvt_vobj_set_visible Shows specified dialog (For a modal dialog,
xvt_vobj_set_visible(dlg, FALSE)
is not supported on some platforms and is not
recommended on any platform)

xvt_vobj_get_client_rect Gets client rectangle of specified dialog

xvt_vobj_get_outer_rect Gets outer rectangle of specified dialog
7-7

Table 7.1. Dialog manipulation functions

xvt_vobj_get_parent Returns SCREEN_WIN

xvt_vobj_get_type Returns dialog WIN_TYPE
(WD_MODAL or WD_MODELESS)

xvt_vobj_move Moves/resizes specified dialog

xvt_vobj_destroy Terminates dialog and all controls

xvt_vobj_get_data Returns app data

xvt_vobj_set_data Sets app data

xvt_scr_set_focus_vobj Sets keyboard focus to specified dialog

xvt_scr_get_focus_vobj Returns dialog NULL_WIN if a dialog has the
keyboard focus

xvt_win_get_handler Gets the event handler for dialog

xvt_win_set_handler Sets the event handler for dialog

XVT Portability Toolkit Guide

7-8

Controls

8
CONTROLS

Controls are the most common object of user interaction. XVT
supports a wide variety of controls: push buttons, check boxes, radio
buttons, edit fields, combo controls, static text, list boxes, scrollbars,
group boxes, notebooks, icons, and text edit objects. An assortment
of XVT controls is shown in Figure 8.1.

8-1

Figure 8.1. Controls that can appear in dialog boxes

XVT Portability Toolkit Guide

8-2

E_CONTROL Events and Event Handlers

Events related to controls are called E_CONTROL events. These
events are sent to the event handler of the control’s parent window.
This is because, unlike windows and dialogs, controls normally lack
event handlers. (However, you can structure your code so that your
controls do have event handlers; see section 3.4.2 on page 3-15.)

The E_CONTROL event contains information specific to each control.
From the type and ci fields in the CONTROL_INFO structure, you
can determine how the user manipulated the control. And, because
controls have short IDs associated with them (which you can
arbitrarily assign), you can build switch statements into the code that
handles your E_CONTROL events, to respond to specific controls.

Creating Controls

You can define controls as resources bundled with a dialog or
window, or add them at runtime to existing windows.You can’t add
controls at runtime to existing dialogs, because most native GUI
dialog handlers don’t allow this. However, you can circumvent this
by creating a control as invisible. And, as previously described, you
can create windows and dialogs, along with a group of controls, at
runtime by using in-memory data structures (see section 7.2.2 on
page 7-5).

Working with Controls

XVT allows the application to interact directly with any control.

Some function calls might get or set the control’s state or change its
attributes, while other calls are more control-specific, for example,
inquiring about a list’s selection.

Many of the functions that manipulate windows and dialogs also
work for some or all control attributes, along with many control-
specific manipulation functions.

See Also: For details on the XRC syntax for creating controls, see the XVT
Portability Toolkit Reference.
For more information about creating windows and dialogs as
in-memory data structures, see Chapter 6, Windows, and
Chapter 7, Dialogs.

Controls

8.1. Creating and Defining Controls

You can create and lay out controls in XVT-Design. See XVT-Design
Manual for more details.

In XVT, you can define and create controls in three ways. These
flexible methods are very similar to those used to create windows
and dialogs:
Dynamic Controls

Dynamic controls are created by your program, without relying
on external resource definitions. This type of control creation is
restricted to windows, because several native GUI platforms do
not allow for dynamic control additions to a dialog after it
has been created. The xvt_ctl_create function can create
dynamic controls in windows at any time from within an XVT
application. You specify all attributes of the control—initial
size, title text, ID, the parent WINDOW, attribute flags,
application data, etc.—as arguments to xvt_ctl_create.

Resource-based Controls
Resource-based controls are created by your application from
an external resource definition. You specify this definition in
XVT’s XVT Resource Compiler (XRC), and the
application accesses it at runtime by means of either a dialog
or window resource ID. The individual controls within the

γ

8-3

window or dialog belong to the overall window or dialog
resource definition. To create resource-based controls, you
use xvt_dlg_create_res and xvt_win_create_res.

Structure-based Controls
As with windows and dialogs, you can create controls from
a WIN_DEF data structure. For controls the function called is
xvt_ctl_create_def.

See Also: For more information about creating resource-based controls, see
section 3.3.1 on page 3-4.
For more information about creating controls from a WIN_DEF data
structure, see section 3.3.2 on page 3-7.

XVT Portability Toolkit Guide

8-4

8.2. Control Event Structures
As it does for windows and dialogs, the WIN_TYPE enumeration
defines control types.

typedef enum e_win_type { /* type of window */
...
WC_PUSHBUTTON /* push button */
WC_EDIT /* edit field */
WC_LBOX /* list box */
WC_ICON /* icon */
WC_VSCROLL /* vertical scrollbar */
WC_HSCROLL /* horizontal scrollbar */
WC_TEXT /* static text */
WC_LISTEDIT /* list edit combo control */
WC_LISTBUTTON /* list button combo control */
WC_CHECKBOX /* check box */
WC_RADIOBUTTON /* radio button */
WC_GROUPBOX /* group box */
WC_TEXTEDIT /* XVT text edit object */
WC_TREEVIEW /* treeview control*/
...

} WIN_TYPE;

EVENT and CONTROL_INFO Data Structures

The EVENT and CONTROL_INFO data structures in the EVENT
structure notify the application of control-related events:

typedef struct s_event {
EVENT_TYPE type;
union {

...
struct s_ctl { /* E_CONTROL */

short id; /* control's ID */
CONTROL_INFO ci; /* control info */
} ctl;
...

} v;
} EVENT, *EVENT_PTR;

The ctl substructure of the EVENT structure contains the control’s ID
(assigned during the creation of the control), and a CONTROL_INFO
structure (the field ci), which contains more control-related event
information.

Controls

Based on the type of the control whose event is being reported, the
appropriate substructure in the CONTROL_INFO structure is filled in:
typedef struct s_ctlinfo {
 WIN_TYPE type; /* WC_* */
 WINDOW win; /* WINDOW of control */
 union {

struct s_pushbutton {
int reserved; /* reserved (unused) */

} pushbutton;

struct s_radiobutton {
int reserved; /* reserved (unused) */

} radiobutton;

struct s_checkbox {
int reserved; /* reserved (unused) */

} checkbox;

struct s_scroll { /* scrollbar action */
SCROLL_CONTROL what;

/* activity site */
short pos; /* thumb position */

} scroll;

struct s_edit {
BOOLEAN focus_change;

/* event a focus change? */
BOOLEAN active; /* if so: gaining focus? */

} edit;
struct s_statictext {

int reserved; /* reserved (unused) */
8-5

} statictext;

struct s_lbox { /* list box action */
BOOLEAN dbl_click; /* double click? */

} lbox;

struct s_listbutton {
int reserved; /* reserved (unused) */

} listbutton;

struct s_listedit {
BOOLEAN focus_change;

/* event a focus change? */
BOOLEAN active; /* if so: gaining focus? */

} listedit;

struct s_groupbox {
int reserved; /* reserved (unused) */

} groupbox;

XVT Portability Toolkit Guide

8-6

struct s_textedit {
BOOLEAN focus_change;

/* event a focus change? */
BOOLEAN active; /* if so: gaining focus? */

} edit;

struct s_treeview {
XVT_TREEVIEW_NODE node; /* Node */
BOOLEAN sgl_click; /* Single click*/
BOOLEAN dbl_click; /* Double click */
BOOLEAN expanded; /* Node was expanded*/
BOOLEAN collapsed; /* Node was collapsed*/

} treeview;

struct s_icon {
int reserved; /* reserved (unused) */

} icon;
} v;

} CONTROL_INFO, * CONTROL_INFO_PTR;

See Also: For more information on handling events related to controls, see
section 3.4.2 on page 3-15.

Controls

8.3. Descriptions of XVT Controls
This section describes the controls that you can use in XVT.
The descriptions cover all information about controls, including
components, attributes, event-related information returned to event
handlers about the control, manipulation functions, and usage
restrictions.

Note: Unless the descriptions specify otherwise, you can set control
attributes at definition and/or creation time (i.e., in XRC or in
WIN_DEF objects), and your program can change them at runtime.

8.3.1. Push Buttons
Push button controls let the user invoke an action: when a user
pushes the button, the application is notified of the action.

Push Button Information

WIN_TYPE WC_PUSHBUTTON
XRC object name BUTTON
Restrictions None

Push Button Attributes

“Default pushbutton” Set at creation time only in XRC or
8-7

WIN_DEF structure
Size / location xvt_vobj_move,

xvt_vobj_get_client_rect, or
xvt_vobj_get_outer_rect

Label text xvt_vobj_set_title or
xvt_vobj_get_title

Label justification Set at creation time only, in XRC with
*_JUST flags, and in WIN_DEF with
CTL_FLAG_*_JUST flags (ignored on
some platforms)

Font xvt_ctl_set_font or
xvt_ctl_get_font

Color xvt_ctl_set_colors or
xvt_ctl_get_colors

Visibility xvt_vobj_set_visible
Enable xvt_vobj_set_enabled
Focus xvt_scr_set_focus_vobj or

XVT Portability Toolkit Guide

8-8

xvt_scr_get_focus_vobj
WINDOW info xvt_win_get_ctl or

xvt_vobj_get_type
Parent xvt_vobj_get_parent
Control ID xvt_ctl_get_id

Event Handling
typedef struct s_ctlinfo {

WIN_TYPE type; /* WC_PUSHBUTTON */
WINDOW win; /* WINDOW of control */
union {

...
struct s_pushbutton {

int reserved;
/* reserved (unused) */

} pushbutton;
...

 } v;
} CONTROL_INFO, * CONTROL_INFO_PTR;

No additional control-specific information is needed; an E_CONTROL
for a WC_PUSHBUTTON type implies that the push button was
pressed.

8.3.2. Check Boxes
Check boxes let the user select from a group of checkable items.
The major difference between check boxes and push buttons is that
check boxes display a state (checked or unchecked), while push

buttons simply provide a selection control with no state attribute.

Check boxes are often visually clustered to represent a set of
switches that the user can either turn on or off. However, there is no
relationship or automatic behavior among the check box controls in
a group; they are completely autonomous.

Check boxes differ from radio buttons (discussed in the next section)
in that the user can switch any number of check boxes on or off,
while radio buttons allow only one selection per group.

XVT does not automatically set the state of check boxes when the
check box control is clicked by the user; you must do this explicitly
from the event handler.

Tip: To set the state of check boxes:
Call xvt_ctl_set_checked.

Controls

Check Box Information

WIN_TYPE WC_CHECKBOX
XRC object name CHECKBOX
Restrictions None

Check Box Attributes

Checked state xvt_ctl_set_checked
(dynamically and at creation time),
xvt_ctl_is_checked

Size / location xvt_vobj_move,
xvt_vobj_get_client_rect, or
xvt_vobj_get_outer_rect

Label text xvt_vobj_set_title or
xvt_vobj_get_title

Label justification Set at creation time only, in XRC via
*_JUST flags, and in WIN_DEF via
CTL_FLAG_*_JUST flags
(ignored on some platforms)

Font xvt_ctl_set_font or
xvt_ctl_get_font

Color xvt_ctl_set_colors or
xvt_ctl_get_colors

Visibility xvt_vobj_set_visible
(also can be set at creation time)
8-9

Enable xvt_vobj_set_enabled
(also can be set at creation time)

Focus xvt_scr_set_focus_vobj or
xvt_scr_get_focus_vobj

WINDOW info xvt_win_get_ctl or
xvt_vobj_get_type

Parent xvt_vobj_get_parent
Control ID xvt_ctl_get_id

XVT Portability Toolkit Guide

8-10

Event Handling
typedef struct s_ctlinfo {

WIN_TYPE type; /* WC_CHECKBOX * /
WINDOW win; /* WINDOW of control */
union {

...
struct s_checkbox {

int reserved;
/* reserved (unused) */

} checkbox;
...

 } v;
} CONTROL_INFO, * CONTROL_INFO_PTR;

No additional control-specific information is needed; an E_CONTROL
for a WC_CHECKBOX type implies that the check box was pressed.

8.3.3. Radio Buttons
Radio buttons are similar to check boxes. Like check boxes, the user
can turn radio buttons on or off. However, radio buttons differ from
check boxes in two respects: only one radio button in the group can
be on (the rest must be off), and radio buttons have a different shape.

The XVT Portability Toolkit does not automatically implement
groups of radio buttons. When you create a radio button group, you
must maintain information (an array of radio button WINDOWs)
indicating which radio buttons belong to that group. Also, make sure
the IDs for those radio button controls are continuous. For example:

#define RA1 1

#define RA2 2
#define RA3 3

XVT-Design automatically generates code to implement radio button
groups. See XVT-Design Manual for more details.

When you are notified that the user pushed a radio button control
(an E_CONTROL event), you need to pass your radio button group
WINDOW array to xvt_ctl_check_radio_button, along with the WINDOW for
the radio button that you want to set. This function ensures that the
selected radio button is on, and that the other radio buttons in the
group are off.

Tip: To convert any XVT control ID to a WINDOW:
Call xvt_win_get_ctl.

γ

Controls

Radio Button Information

WIN_TYPE WC_RADIOBUTTON
XRC object name RADIOBUTTON
Restrictions None

Radio Button Attributes

Checked state xvt_ctl_check_radio_button
(dynamically and at creation time),
xvt_ctl_is_checked

Size / location xvt_vobj_move,
xvt_vobj_get_client_rect, or
xvt_vobj_get_outer_rect

Label text xvt_vobj_set_title or
xvt_vobj_get_title

Label justification Set at creation time only,
in XRC via *_JUST flags,
and in WIN_DEF via CTL_FLAG_*_JUST
flags (ignored on some platforms)

Font xvt_ctl_set_font or
xvt_ctl_get_font

Color xvt_ctl_set_colors or
xvt_ctl_get_colors

Visibility xvt_vobj_set_visible
(also can be set at creation time)
8-11

Enable xvt_vobj_set_enabled
(also can be set at creation time)

Grouping Set at creation time
Focus xvt_scr_set_focus_vobj or

xvt_scr_get_focus_vobj
WINDOW info xvt_win_get_ctl or

 xvt_vobj_get_type
Parent xvt_vobj_get_parent
Control ID xvt_ctl_get_id

XVT Portability Toolkit Guide

8-12

Event Handling
typedef struct s_ctlinfo {

WIN_TYPE type; /* WC_RADIOBUTTON */
WINDOW win; /* WINDOW of control */
union {

...
struct s_radiobutton {

int reserved;
/* reserved (unused) */

} radiobutton;
...

} v;
} CONTROL_INFO, * CONTROL_INFO_PTR;

No additional control-specific information is needed; an E_CONTROL
for a WC_RADIOBUTTON implies that the radio button was pressed.

8.3.4. Static Text
Static text controls let you place read-only text strings into a dialog
or window. These are not text strings in the XVT graphical text
sense, but rather true controls without user interaction attributes.

Static Text Information

WIN_TYPE WC_TEXT
XRC object name TEXT
Restrictions None
Static Text Attributes

Size / location xvt_vobj_move,
xvt_vobj_get_client_rect, or
xvt_vobj_get_outer_rect

Text xvt_vobj_set_title or
xvt_vobj_get_title

Text justification Set at creation time only, in XRC via
*_JUST flags, and in WIN_DEF via
CTL_FLAG_*_JUST flags
(ignored on some platforms)

Font xvt_ctl_set_font or
xvt_ctl_get_font

Color xvt_ctl_set_colors or
xvt_ctl_get_colors

Controls

Visibility xvt_vobj_set_visible
Enable xvt_vobj_set_enabled

(a FALSE value might be ignored on some
platforms that do not natively support
disabled static text)

WINDOW info xvt_win_get_ctl or
xvt_vobj_get_type

Parent xvt_vobj_get_parent
Control ID xvt_ctl_get_id

Event Handling
typedef struct s_ctlinfo {

WIN_TYPE type; /* WC_TEXT */
WINDOW win; /* WINDOW of control */
union {

...
struct s_statictext {

int reserved;
/* reserved (unused)*/

} statictext;
 ...
 } v;
} CONTROL_INFO, * CONTROL_INFO_PTR;

No events are generated; users cannot manipulate this control.

8.3.5. Edit Fields
8-13

Edit field controls let the user input a text string to the application.
These controls vary in their appearance and behavior depending on
the native GUI platform. For example, some systems provide small
scrollbars for these controls on one or both ends of the control. Also,
platforms handle the text scrolling differently.

However, edit field controls always report events whenever the text
string is modified or the keyboard focus is gained (or lost).

XVT edit field controls are always one line high, which overrides
the rectangle height specified in the creation call.

Edit Field Information

WIN_TYPE WC_EDIT
XRC object name EDIT
Restrictions None

XVT Portability Toolkit Guide

8-14

Edit Field Attributes

Size / location xvt_vobj_move,
xvt_vobj_get_client_rect, or
xvt_vobj_get_outer_rect

Edit field text xvt_vobj_set_title or
xvt_vobj_get_title

Text justification Set at creation time only, in XRC via
*_JUST flags, and in WIN_DEF via
CTL_FLAG_*_JUST flags
(ignored on some platforms)

Font xvt_ctl_set_font or
xvt_ctl_get_font

Color xvt_ctl_set_colors or
xvt_ctl_get_colors

Visibility xvt_vobj_set_visible
Enable xvt_vobj_set_enabled
Current text selection xvt_ctl_get_text_sel or

xvt_ctl_set_text_sel
Focus xvt_scr_set_focus_vobj or

xvt_scr_get_focus_vobj
WINDOW info xvt_win_get_ctl or

xvt_vobj_get_type
Parent xvt_vobj_get_parent
Control ID xvt_ctl_get_id

Event Handling

typedef struct s_ctlinfo {

WIN_TYPE type; /* WC_EDIT */
WINDOW win; /* WINDOW of control */
union {

...
struct s_edit {

BOOLEAN focus_change;
/* is it a focus change? */

BOOLEAN active;
 /* if so: gaining focus? */

} edit;

struct s_statictext {...}
...

} v;
} CONTROL_INFO, * CONTROL_INFO_PTR;

Controls

Based on the event information above, you can determine the
following:

• If focus_change is FALSE, then the contents of the edit field
changed. You can call xvt_vobj_get_title to determine the new
contents of the edit field, and compare this with the previous
contents of the edit field.

• If focus_change is TRUE, and active is TRUE, then the edit field
gained the keyboard focus.

• If focus_change is TRUE, and active is FALSE, then the edit field
lost the keyboard focus.

Changing Behavior of Keys with Event Hooks

You can intercept a key sequence in an edit field, to implement a
specific action. For example, you might want to make the Enter key
terminate input to the edit field and move the user to the “next” field
in the dialog or window. To accomplish this, your application must
use event hooks. The application must capture the keystrokes from
the native windowing system before they are processed by XVT.

Tip: To use event hooks:
Use the ATTR_EVENT_HOOK attribute in the event handler of the
dialog or window container of the edit field, like this:

long XVT_CALLCONV1 dlg_eh(WINDOW win, EVENT *ep)
{

8-15

switch(ep->type) {
...
case E_CONTROL:

switch(ep->v.ctl.id) {
...
case EDIT_FIELD_1:

if (ep->v.ctl.ci.v.edit.active &&
ep->v.ctl.ci.v.edit.focus_change)
xvt_vobj_set_attr(NULL_WIN,

 ATTR_EVENT_HOOK,
(long)my_event_hook);

if (!ep->v.ctl.ci.v.edit.active &&
ep->v.ctl.ci.v.edit.focus_change)
xvt_vobj_set_attr(NULL_WIN,

 AT TR_EVENT_HOOK, NULL);
break;

...
}

...
}
return (0L);

}

XVT Portability Toolkit Guide

8-16

Within the function my_event_hook, you perform the platform-specific
operations to process the keystrokes in the edit field. For example,
your code might watch for an ENTER keystroke, then call:

xvt_scr_set_focus_vobj(next_ec);

where next_ec is of type WINDOW and refers to the next control to
which you want to navigate.

See Also: For details about how to structure your my_event_hook program,
see ATTR_EVENT_HOOK in the “Non-Portable Attributes and Escape
Functions” appendix of the appropriate XVT Platform-Specific
Book.

8.3.6. List Boxes
List boxes let the user make single or multiple selections from a
scrollable list of candidate selections. List boxes generate
E_CONTROL events to your dialog or window event handler when the
user clicks or double-clicks on an item in the list box. You won’t
receive any events in your application when the user scrolls the list
box; this behavior is handled automatically by XVT via the native
list box control.

Many XVT functions, all starting with the prefix xvt_list_*, work with
list boxes (as well as other list-oriented controls, such as combo
controls).

SLISTs
To specify text strings for a list box and retrieve single or multiple
selections, you use an XVT data type called an SLIST (short for
String LIST). SLISTs are abstracted lists of strings, where each
element contains a string pointer, an index (starting at 0), and a long
data value.

Several XVT functions, all prefixed with xvt_slist_*, manipulate
SLISTs.

When you add an SLIST to a list box, only the strings are
maintained. List boxes cannot maintain the data pointers associated
with each SLIST element. When xvt_list_get_sel is called, the long data
words of the returned SLIST are filled with the element’s index in the
list box.

Note: SLISTs cannot contain carriage returns, line feeds, or new lines.

See Also: For a list of the functions you can use to manipulate SLISTs, see
section B.1 in Appendix B, Utilities.

Controls

List Box Information

WIN_TYPE WC_LBOX
XRC object name LISTBOX
Restrictions None

List Box Attributes

Size / location xvt_vobj_move,
xvt_vobj_get_client_rect, or
xvt_vobj_get_outer_rect

Selection mode Single (default), multiple or read only
(all defined at creation time only)

Font xvt_ctl_set_font or
xvt_ctl_get_font

Color xvt_ctl_set_colors or
xvt_ctl_get_colors

Visibility xvt_vobj_set_visible
Enable xvt_vobj_set_enabled
Current selection(s) xvt_list_get_sel,

xvt_list_get_first_sel,
xvt_list_is_sel,
xvt_list_get_sel_index, or
xvt_list_set_sel

List count xvt_list_count_all or
xvt_list_count_sel
8-17

List contents xvt_list_add,
xvt_list_clear,
xvt_list_get_all,
xvt_list_rem, or
xvt_list_get_elt

List updating xvt_list_suspend or
xvt_list_resume

Focus xvt_scr_set_focus_vobj or
xvt_scr_get_focus_vobj

WINDOW info xvt_win_get_ctl or
xvt_vobj_get_type

Parent xvt_vobj_get_parent
Control ID xvt_ctl_get_id

XVT Portability Toolkit Guide

8-18

Event Handling
typedef struct s_ctlinfo {

WIN_TYPE type; /* WC_LBOX */
WINDOW win; /* WINDOW of control */
union {

...
struct s_lbox {

/* list box action */
BOOLEAN dbl_click;

/* double click (vs. single) */
} lbox;
...

} v;
} CONTROL_INFO, * CONTROL_INFO_PTR;

The dbl_click field tells whether the user double-clicked in the list
box, or simply single-clicked. No other events are reported for this
control.

Implementation Note: According to Macintosh look-and-feel guidelines, clicking below
the last item in a list box causes an E_CONTROL event to be delivered,
and the application must clear any selection. On all other platforms,
no event is generated.

Example: Because list boxes can be complex, here is an example of how you
might write part of an XVT application using list boxes. In this
example, an XRC-defined dialog holds a single-selection list box
containing eight items. When a user clicks one of the list box items,
the code calls xvt_scr_beep, which signals that a single-click selection
was made. A double-click signals the application to get the selection

that was double-clicked, then close the dialog.

First, here is the XRC code for defining the dialog and list box
control:

/* XRC dialog and control definitions */
...
#define DIALOG_11000
#define LISTBOX_11001
...
DIALOG DIALOG_1,100, 100, 400, 500
 "Sample Dialog" MODELESS

LISTBOX LISTBOX_1, 30, 30, 200, 300
...

Controls

Here is the dialog and list box creation code, and the dialog’s event
handler:
...
xvt_dlg_create_res (WD_MODELESS, DIALOG_1, EM_ALL,

dialog_1_eh, 0L);

long XVT_CALLCONV1 dialog_1_eh(WINDOW win, EVENT *ep);
{

SLIST slist;
WINDOW lbox_win;

switch (ep->type) {
...
case E_CREATE:

/* This is the best place to fill the list box
*/
lbox_win = xvt_win_get_ctl(win, LISTBOX_1);

slist = xvt_slist_create;
xvt_slist_add_at_elt (slist, (SLIST_ELT)NULL,

"Hawaii", 0L);
xvt_slist_add_at_elt (slist, (SLIST_ELT)NULL,

"Alaska", 0L);
xvt_slist_add_at_elt (slist, (SLIST_ELT)NULL,

"Texas", 0L);
xvt_slist_add_at_elt (slist, (SLIST_ELT)NULL,

"Wisconsin", 0L);
xvt_slist_add_at_elt (slist, (SLIST_ELT)NULL,

"New York", 0L);
xvt_slist_add_at_elt (slist, (SLIST_ELT)NULL,

"Colorado", 0L);
xvt_slist_add_at_elt (slist, (SLIST_ELT)NULL,

"Washington", 0L);
8-19

xvt_slist_add_at_elt (slist, (SLIST_ELT)NULL,
"Florida", 0L);

xvt_list_add (lbox_win, -1, slist);
xvt_slist_destroy (slist);
break;

case E_CONTROL:

if (ep->v.ctl.id == LISTBOX_1) {
if (ep->v.ctl.ci.v.lbox.dbl_click ==

TRUE) {
sel_slist = xvt_list_get_sel

(xvt_win_get_ctl(win, LISTBOX_1));
xvt_vobj_destroy (win);

}
else

xvt_scr_beep();
}
break;
...
}

return (0L);
}

XVT Portability Toolkit Guide

8-20

8.3.7. Scrollbars
Horizontal and vertical scrollbar controls are similar in many ways
to the scrollbars that you can define as part of a window’s border
decorations. The only difference is that they are in fact controls, not
border decorations. However, you can handle them the same as
window border scrollbars.

The what field, of type SCROLL_CONTROL, indicates which part of
the scrollbar was operated, as shown below:

typedef enum { /* site of scrollbar act */
SC_NONE, /* nowhere (event ignored) */
SC_LINE_UP, /* one line up */
SC_LINE_DOWN, /* one line down */
SC_PAGE_UP, /* previous page */
SC_PAGE_DOWN, /* next page */
SC_THUMB, /* thumb repositioning */
SC_THUMBTRACK /* dynamic thumb tracking */

} SCROLL_CONTROL;

The interpretation of line and page is entirely up to your application.
Each individual click on the scrollbar generates a separate
E_CONTROL event. If the user holds the mouse button down, a
sequence of events occurs.

The what field is equal to SC_THUMBTRACK while the user drags the
thumb, and SC_THUMB when the user stops dragging. In these cases,
the pos field indicates the current position of the thumb relative to the
range of the scrollbar. The range must have been previously set with
a call to xvt_sbar_set_range. If no such call was made, the range is
undefined, so pos is meaningless. If the call was made, pos is relative

to the range for the scrollbar.

Scrollbar Information

WIN_TYPE WC_VSCROLL
WC_HSCROLL

XRC object name SCROLLBAR
Restrictions None

Controls

Scrollbar Attributes

Size / location xvt_vobj_move,
xvt_vobj_get_client_rect, or
xvt_vobj_get_outer_rect

Color xvt_ctl_set_colors or
xvt_ctl_get_colors

Visibility xvt_vobj_set_visible
Enable xvt_vobj_set_enabled
Scrollbar thumb position xvt_sbar_set_pos or

xvt_sbar_get_pos
Scrollbar range xvt_sbar_set_range or

xvt_sbar_get_range
Scrollbar proportion
indicator xvt_sbar_set_proportion or

xvt_sbar_get_proportion
Focus xvt_scr_set_focus_vobj or

xvt_scr_get_focus_vobj
WINDOW info xvt_win_get_ctl or

xvt_vobj_get_type
Parent xvt_vobj_get_parent
Control ID xvt_ctl_get_id

Event Handling
typedef struct s_ctlinfo {
8-21

 WIN_TYPE type; /* WC_VSCROLL or WC_HSCROLL */
 WINDOW win; /* WINDOW of control */
 un ion {

...
 struct s_scroll {

/* scrollbar action */
 SCROLL _CONTROL what;

 /* site of activity */
 short pos; /* thumb position */

 } scroll;
...

 } v;
} CONTROL_INFO, * CONTROL_INFO_PTR;

The what field indicates which part of the scrollbar control was
manipulated. The pos field indicates the new position of the scrollbar
thumb (when what is SC_THUMB*).

XVT Portability Toolkit Guide

8-22

8.3.8. List Button
An XVT list button control is a combination of two other control
types—a push button and a selection list. (Such controls are
sometimes referred to as “combo controls” for this reason.) A list
button can be described as a list box that can be displayed in two
ways:

• As a push button whose text label represents the current
selection in the list (when the control is not being used)

• As a list box (when the control is being used)

The list box part of the list button is transitory—it appears only when
the list button is pressed. When the user selects from the list, the list
box part of the control disappears, leaving the selected text in the list
button. (If the list button list is empty, then the list button label is
also empty.)

The events generated from list buttons are similar to those generated
from list boxes except that, because double-clicks aren’t supported
in list buttons, the event merely signals that the user made a selection
from the list.

For list boxes, XVT supports all of the xvt_list_* functions supported
for list buttons, so list buttons utilize SLIST objects in the same way
as do list boxes.

An XVT list button control’s static portion is always one line high.
The height specified in the creation call determines the height of the
control with the list portion visible.
List Button Information

WIN_TYPE WC_LISTBUTTON
XRC object name LISTBUTTON
Restrictions xvt_ctl_set_text_sel cannot be used;

no concept of a “selection” exists in
terms of the text label in the button

List Button Attributes

Size / location xvt_vobj_move,
xvt_vobj_get_client_rect, or
xvt_vobj_get_outer_rect

Selection mode always single select mode (not settable)
Label text xvt_list_get_sel or

Controls

xvt_list_set_sel
Label justification Set at creation time only, in XRC via

*_JUST flags, and in WIN_DEF via
CTL_FLAG_*_JUST flags
(ignored on some platforms)

Font xvt_ctl_set_font or
xvt_ctl_get_font

Color xvt_ctl_set_colors or
xvt_ctl_get_colors

Visibility xvt_vobj_set_visible
Enable xvt_vobj_set_enabled
Current selection(s) xvt_list_get_sel,

xvt_list_get_first_sel,
xvt_list_is_sel,
xvt_list_get_sel_index, or
xvt_list_set_sel

List count xvt_list_count_all or
xvt_list_count_sel

List contents xvt_list_add,
xvt_list_clear,
xvt_list_get_all,
xvt_list_rem, or
xvt_list_get_elt

List updating xvt_list_suspend or
xvt_list_resume

Focus xvt_scr_set_focus_vobj or
8-23

xvt_scr_get_focus_vobj
WINDOW info xvt_win_get_ctl or

xvt_vobj_get_type
Parent xvt_vobj_get_parent
Control ID xvt_ctl_get_id

Event Handling
typedef struct s_ctlinfo {

WIN_TYPE type; /* WC_LISTBUTTON */
WINDOW win; /* WINDOW of control */
union {

...
struct s_listbutton {

int reserved;
/* reserved (unused) */

} listbutton;
...

} v;
} CONTROL_INFO, * CONTROL_INFO_PTR;

XVT Portability Toolkit Guide

8-24

No additional control-specific information needed; an E_CONTROL
for a WC_LISTBUTTON type implies that a selection was made from
the list component. Use one of the xvt_list_get_* functions to get
selection information.

Miscellaneous Information About List Buttons

Here are some additional considerations regarding XVT list buttons:
• A list selection made by either the user or the application

updates the button text portion automatically.
• The text label in the button always reflects the current list

selection. If there is no selection, or if the list is empty, no text
is displayed in the text portion.

• Deleting a list item that is the current selection, by definition,
results in an empty text label. Deleting other non-selected
items does not change the text label of the control.

• Adding items to the list does not cause those items to be the
current selection. The exception to this is when the first list
item is added. In this case, the first item is automatically
selected and thus displayed.

• The current selection of a list is maintained after the list itself
disappears. In other words, the program can inquire and/or
change the selection at any time, even when the list is not
visible.

• The list button bounding rectangle describes the control area
as if the list component were being displayed.
8.3.9. List Edit
An XVT list edit control is a combination of two other control types:
an edit field, and a selection list. (Such controls are sometimes
referred to as “combo controls” for this reason.) A list edit is an edit
field control that possesses an alternate, or shorthand, text input
source: a pop-up list of text items.The user can operate a list edit
control in two ways:

• By making a selection from the list (which is then inserted
into the edit field component)

• By directly editing the edit field’s contents component

The list box part of the list edit is transitory; it appears only when the
part of the list edit control that displays the list component is pressed.

Controls

If the list edit list component is empty, the list button edit field can
still contain text, and doesn’t have to be empty.

The events generated from list edits are quite similar to those
generated for edit field controls. This is because you are notified
when the control gains or loses the keyboard focus and when the edit
field contents are modified. In addition, list edit events are generated
whenever the user makes a selection from the pop-up list.

Tip: To determine the text string displayed in the edit field component:
Call xvt_vobj_get_title.

Most of the xvt_list_* functions supported for list boxes and list
buttons are also supported for list edits.

List edits utilize the SLIST objects in the same way as do list boxes
and list buttons. However, there is one important distinction: list
edits have no concept of a current list selection. The list component
is secondary to the edit field in the case of list edit controls. Because
of this, you can’t use any of the xvt_list_*_sel list selection-related
functions with list edit controls.

An XVT list edit control’s static portion is always one line high.
The height specified in the creation call determines the height of the
control with the selection list portion visible.

List Edit Information
8-25

WIN_TYPE WC_LISTEDIT
XRC object name LISTEDIT
Restrictions You can’t use any of the

xvt_list_*_sel* selection-oriented
functions with list edits; XVT errors
result if you attempt this

List Edit Attributes

Size / location xvt_vobj_move,
xvt_vobj_get_client_rect,
xvt_vobj_get_outer_rect

Selection mode always single select mode (not settable)
Label text xvt_vobj_set_title /

xvt_vobj_get_title
Font xvt_ctl_set_font or

xvt_ctl_get_font

XVT Portability Toolkit Guide

8-26

Color xvt_ctl_set_colors or
xvt_ctl_get_colors

Visibility xvt_vobj_set_visible
Current text selection xvt_ctl_get_text_sel or

xvt_ctl_set_text_sel
List count xvt_list_count_all
List contents xvt_list_add,

xvt_list_clear,
xvt_list_get_all,
xvt_list_rem, or
xvt_list_get_elt

List updating xvt_list_suspend or
xvt_list_resume

Enable xvt_vobj_set_enabled
Text justification Set at creation time only, in XRC via

*_JUST flags, and in WIN_DEF via
CTL_FLAG_*_JUST flags
(ignored on some platforms)

Focus xvt_scr_set_focus_vobj or
xvt_scr_get_focus_vobj

WINDOW info xvt_win_get_ctl or
xvt_vobj_get_type

Parent xvt_vobj_get_parent
Control ID xvt_ctl_get_id

Event Handling
typedef struct s_ctlinfo {
 WIN_TYPE type; /* WC_LISTEDIT */

 WINDOW win; /* WINDOW of control */
 union {

...
struct s_listedit {

BOOLEAN focus_change;
/* did the edit field

part change focus? */
BOOLEAN active;
 /* if so, focus gained? */

} listedit;
...

 } v;
} CONTROL_INFO, * CONTROL_INFO_PTR;

Controls

Based on the list edit event information in the table above, you can
also determine the following:

• If focus_change is FALSE, then the contents of the edit field
changed. You can call xvt_vobj_get_title to determine the new
contents of the edit field, and compare this with the previous
contents of the edit field.

• If focus_change is TRUE, and active is TRUE, then the edit field
gained the keyboard focus.

• If focus_change is TRUE, and active is FALSE, then the edit field
lost the keyboard focus.

Miscellaneous Information for List Edits

Here are some additional considerations to keep in mind when using
XVT list edits:

• A list selection made by either the user or the application
updates the edit field component automatically. The entire
edit field contents become selected.

• Calling xvt_vobj_set_title on a list edit sets the contents of the
edit field, but does not automatically select the contents of the
edit field.

• Typing into the edit field component of a list edit control may
cause a matching item in the list to be automatically selected.
(Whether the matching item is selected depends on the look-
8-27

and-feel of the particular native GUI toolkit.)
• E_CONTROL events with focus change information might not

be sent when the focus is changed between the edit field and
list components of list edit controls.

• xvt_ctl_set_text_sel sets the selection or the insertion point for
the edit field part of a list edit. Note that calling
xvt_ctl_set_text_sel also sets the input focus to the control.

XVT Portability Toolkit Guide

8-28

8.3.10. Group Boxes
XVT group box controls provide a way to draw an annotated
rectangle around (and behind) a group of controls in a window or
dialog. The group box rectangle has an embedded label or title,
which appears on the upper line of the rectangle, and can be either
left, centered, or right depending on the text justification flags for the
control.

A group box defines those controls that are within its boundaries as
a set. This does not imply that a group box is the parent of controls
contained within it; no such relationship exists in XVT. Group boxes
are like static text in that they provide no interaction capability or
subsequent events; they are for annotation purposes only.

XVT automatically places group boxes at the back of a dialog or
window, behind all other controls. Overlapping group boxes are not
supported.

Note: You can use group boxes with any controls except XVT’s text edit
objects, which are not considered native controls on any platforms.

Group Box Information

WIN_TYPE WC_GROUPBOX
XRC object name GROUPBOX
Restrictions You cannot call

xvt_scr_set_focus_vobj for
group boxes. In addition, nested group

boxes are not allowed.

Group Box Attributes

Size / location xvt_vobj_move,
xvt_vobj_get_client_rect, or
xvt_vobj_get_outer_rect

Annotation text xvt_vobj_set_title or
xvt_vobj_get_title

Annotation justification Set at creation time only, in XRC via
*_JUST flags, and in WIN_DEF via
CTL_FLAG_*_JUST flags (ignored on
some platforms)

Font xvt_ctl_set_font or
xvt_ctl_get_font

Controls

Color xvt_ctl_set_colors or
xvt_ctl_get_colors

Visibility xvt_vobj_set_visible
(platform-specific, can be ignored)

Enable xvt_vobj_set_enabled
(platform-specific, can be ignored)

WINDOW info xvt_win_get_ctl or
xvt_vobj_get_type

Parent xvt_vobj_get_parent
Control ID xvt_ctl_get_id

Event Handling
typedef struct s_ctlinfo {

WIN_TYPE type; /* WC_GROUPBOX */
WINDOW win; /* WINDOW of control */
union {

...
struct s_groupbox {

int reserved;
/* reserved (unused) */

} groupbox;
...

 } v;
} CONTROL_INFO, * CONTROL_INFO_PTR;

No events are generated; users cannot manipulate this control.
8-29

XVT Portability Toolkit Guide

8-30

8.3.11. Notebooks
Notebook controls allow the user to define multiple child windows
for the same area of a window. Figure 8.2 shows a Win32 notebook.
Figure 8.2. Win32 notebook control

A notebook is made up of a hierarchy of three different objects: tabs,
pages, and faces (XVT WINDOW), as shown in Figure 8.3. It is simply
a container for it's tabs.

Controls

Figure 8.3. Notebook hierarchy

A tab has a visual button the user clicks to select the tab. Each tab
can have multiple pages.

A page is conceptual. A page can have one face. If a tab has more
than one page, the programmer must come up with a way for the user
to change pages. For example, you may provide “Next” and “Prev”
buttons or a list button with page titles on each face for tabs with
multiple pages.
8-31

A face is a standard XVT child window.

8.3.11.1. Notebook Creation
The notebook control is more complicated to create than most other
XVT controls. Notebook controls can be created dynamically, or
they may be structure based. They cannot be created from resources.
(See section 8.1.) Once the notebook has been created, the other
objects (tabs, pages, and faces) must be created dynamically.
Without one or more tabs, a notebook is not useful.

Creating Tabs

The function xvt_notebk_add_tab will create a tab for the specified
notebook control. Tabs are identified by an index that represents
their order in the notebook control (0 based). Without one or more
pages, a tab is not useful.

XVT Portability Toolkit Guide

8-32

Creating Pages

The function xvt_notebk_add_page will create a page for the specified
tab within the specified notebook control. Pages are identified by an
index that represents their order in the tab (0 based). Without a face,
a page is not useful.

Creating Faces

There are three functions for creating faces: xvt_notebk_create_face for
dynamic creation, xvt_notebk_create_face_def for structure-based
creation, and xvt_notebk_create_face_res for resource-based creation. A
face is created for a specific page in a specific tab in a specific
notebook. Since each face is an XVT child window, each has it’s
own event handler.

Controls

Example: The following code will create the notebook in Figures 8.2 and 8.3
above:

RCT aRct;
WINDOW aNotebk;
WIN_DEF *aFace;
XVT_IMAGE anImage = NULL;

/* Build notebook control */
xvt_rect_set(&aRct, 20, 20, 400, 300);
aNotebk = xvt_ctl_create(WC_NOTEBK, &aRct,

"Notebook", xdWindow, 0L, 0L, 2);

/* Build Window Tab */
anImage = xvt_image_read_bmp("window.bmp");
xvt_notebk_add_tab (aNotebk, 0, "Window", anImage);
xvt_notebk_add_page(aNotebk, 0, 0, "Page0",0L);
aFace = xvt_res_get_win_def(WINDOW_FACE);
xvt_notebk_create_face_def(aNotebk, 0, 0,

aFace, EM_ALL, WINDOW_FACE_eh, 0L);
xvt_res_free_win_def(aFace);
xvt_image_destroy(anImage);

/* Build Tab Tab */
anImage = xvt_image_read_bmp("tab.bmp");
xvt_notebk_add_tab (aNotebk, 1, "Tab", anImage);
xvt_notebk_add_page(aNotebk, 1, 0, "Page0",0L);
aFace = xvt_res_get_win_def(TAB_FACE);
xvt_notebk_create_face_def(aNotebk, 1, 0,

aFace, EM_ALL, TAB_FACE_eh, 0L);
xvt_res_free_win_def(aFace);
xvt_image_destroy(anImage);

/* Build Page Tab */
anImage = xvt_image_read_bmp("page.bmp");
8-33

xvt_notebk_add_tab (aNotebk, 2, "Page", anImage);
xvt_notebk_add_page(aNotebk, 2, 0, "Page0",0L);
aFace = xvt_res_get_win_def(PAGE_FACE);
xvt_notebk_create_face_def(aNotebk, 2, 0,

aFace, EM_ALL, PAGE_FACE_eh, 0L);
xvt_res_free_win_def(aFace);
xvt_image_destroy(anImage);

/* Build Face Tab */
anImage = xvt_image_read_bmp("face.bmp");
xvt_notebk_add_tab (aNotebk, 3, "Face", anImage);
xvt_notebk_add_page(aNotebk, 3, 0, "Page0",0L);
aFace = xvt_res_get_win_def(FACE_FACE);
xvt_notebk_create_face_def(aNotebk, 3, 0,

aFace, EM_ALL, FACE_FACE_eh, 0L);
xvt_res_free_win_def(aFace);
xvt_image_destroy(anImage);

/* Activate first tab, first page. */
xvt_notebk_set_front_page(aNotebk, 0, 0);

XVT Portability Toolkit Guide

8-34

Notebook Information

WIN_TYPE WC_NOTEBK
XRC object name Not applicable
Restrictions Cannot be created in dialogs

Notebook Attributes

Size / location xvt_vobj_move,
xvt_vobj_get_client_rect, or
xvt_vobj_get_outer_rect

Font xvt_ctl_set_font (changes all tab fonts)
Color xvt_ctl_set_colors or

xvt_ctl_get_colors
(not supported on XVT/Win32)

Visibility xvt_vobj_set_visible
Enable xvt_vobj_set_enabled
Focus xvt_scr_set_focus_vobj or

xvt_scr_get_focus_vobj
WINDOW info xvt_win_get_ctl or xvt_vobj_get_type
Parent xvt_vobj_get_parent
Control ID xvt_ctl_get_id

Event Handling
typedef struct s_ctlinfo {

WIN_TYPE type; /* WC_NOTEBK */

WINDOW win; /* WINDOW id of the control */
union {

…
struct s_notebk {

WINDOW face;
short tab_no;
short page_no;

} notebk;
} v;

} CONTROL_INFO, *CONTROL_INFO_PTR;

An event for the notebook control is sent when the user selects a tab.
The face field is the face that currently has focus. The tab_no field is
the tab that was selected. The page_no field is the front page for the
notebook (face is the face for the current page).

Events for a face will go to the face’s event handler.

Controls

Miscellaneous Information About Notebooks

The following work with tabs, pages, and faces within a notebook
control:

Add a page to a specific tab xvt_notebk_add_page
Add a tab to a notebook control xvt_notebk_add_tab
Create a face for a page dynamically xvt_notebk_create_face
Create a face from an array of data structures xvt_notebk_create_face_def
Create a face from a resource file xvt_notebk_create_face_res
Enumerate through all the pages and apply a
function to each page

xvt_notebk_enum_pages

Get the face in the notebk at tab and page xvt_notebk_get_face
Get the front page for a notebook xvt_notebk_get_front_page
Get the number of pages in the tab specified xvt_notebk_get_num_pages
Get the number of tabs in a notebk xvt_notebk_get_num_tabs
Get the data associated with a page xvt_notebk_get_page_data
Get the page, tab, and notebk associated with
a specific face

xvt_notebk_get_page_from_face

Get the page title xvt_notebk_get_page_title
Get the image for a tab xvt_notebk_get_tab_image
Get the title for a tab xvt_notebk_get_tab_title
Remove a page attached to a tab xvt_notebk_rem_page
Remove a tab xvt_notebk_rem_tab
Set the data for a page xvt_notebk_set_page_data
Set the title for a page xvt_notebk_set_page_title
8-35

8.3.12. HTML Controls
HTML controls give XVT applications the ability to draw text and
images in a window using HTML data. The file location for the data
is specified with a well-formed Universal Resource Locator (URL)
string containing either a local file path or an Internet address. The
HTML control is a WINDOW of type WC_HTML.

HTML is a common format and the ability to leverage HTML within
production applications is a powerful feature that extends the utility
of an XVT application. The types of tasks you can perform with the
HTML control and the HTML Rendering library include:

• Drawing HTML data in application windows
• Working with URL events

Set the front page xvt_notebk_set_front_page
Set the tab image xvt_notebk_set_tab_image
Set the tab title xvt_notebk_set_tab_title

XVT Portability Toolkit Guide

8-36

• Formatting and updating the rendering area with such
elements as borders and scroll bars

• Obtaining information about pages
• Launching a native browser from an XVT application

Note: It is important to remember that the XVT HTML control, while
useful, is not a full Internet browser; it does not contain advanced
features such as history and Plug-in support.

Platform Differences

As with most XVT controls, the HTML control relies on the
underlying native platform implementation of the control. The XVT
application will reflect those native differences. It is important to
remember that the intrinsic operation of the application will be
maintained across the different platforms, even though the
manifestation of the behavior may vary.

In the case of the HTML control, XVT/Win32 renders both local
and external/Internet HTML files in the same lightweight COM
object window that is embedded in the application. On the
Macintosh platform, local URLs are displayed in the application,
while external URLs, 'mailto' and default FTP clients for 'ftp://'
activities will be displayed in the default system browser. The
Platform-Specific Book for each native platform contains additional,
specific information on the implementation.

Activities
Rendering HTML is an automatic, encapsulated activity, completely
handled by the native control. There is little need to intervene in the
drawing process. The duties of the XVT application are to set the
URL to be rendered and query the current URL setting.

The application can also define a URL intercept handler. This is
useful when the application neeeds to maintain a history list of
visited URLs or when needing to impose a degree of control over the
URL value. If a URL intercept handler is defined, the application is
notified, through its intercept handler whenever a URL is to be set
on the HTML control; either by the application setting the URL, or
when the user follows a link in the displayed HTML.

Note: The following list is unique behavior for the HTML control:
• If the HTML rendered in the control doesn't fit within the

client area, scrollbars will appear if necessary.

Controls

• The HTML control cannot gain focus. xvt_vobj_is_focusable will
always return FALSE.

• The client and outer rectangles are the same.
• xvt_vobj_set_title has no effect, xvt_vobj_get_title returns the title

of the HTML page as it would appear at the top of a browser.

HTML Rendering Library Functions

The following functions are available in the HTML Rendering
Library:
xvt_html_get_url

Get the URL value of an HTML Control
xvt_html_set_url

Set the URL value of the HTML Control, causing the HTML to
be displayed

xvt_html_get_url_intercept

Retrieve the URL Intercept Handler for HTML Control
xvt_html_set_url_intercept

Set the URL Intercept Handler for HTML Control
xvt_scr_launch_browser

Launch the OS Default Web Browser
8-37

xvt_html_refresh

Request a refresh of the currently active page in the browser
xvt_html_home

Request the browser navigate to the system’s home page
xvt_html_back

Go to the previous page visited, if there is one
xvt_html_forward

Go to the following page, if there is one
xvt_html_stop

Tell the browser to stop trying to load the page
xvt_html_search

Request the browser navigate to the system’s search page

These commands can be used to:

XVT Portability Toolkit Guide

8-38

• Build a history list
• Redirect URLs
• Temporarily override the intercept handler by saving the

current handler and restoring it later with a call to
xvt_html_set_url_intercept.

• Retrieve the current intercept handler from one HTML
control and assign it to another HTML control

• Save the intercept handler, assign a new intercept handler,
and "preprocess" URLs with the new intercept handler before
invoking the original intercept handler. This technique can be
used to effectively chain together a series of intercept
handlers.

Example: This code uses xvt_html_get_url_intercept to get the URL intercept
handler so that it can be assigned to another HTML control.
/* Get the URL intercept handler */
XVT_HTML_URL_INTERCEPT_HANDLER urlIH =
xvt_html_get_url_intercept(myHTMLCtl);
xvt_html_set_url_intercept(myNewHTMLCtl, urlIH);

Example: This code uses xvt_html_set_url_intercept to set an URL intercept
handler to redirect URLs.
BOOLEAN myInterceptHdlr(WINDOW win, char **url)
{
 char localURL[] = "http://www.xvt.com";
 char errURL[] = "file://c:/my_app/errpage.htm";

 /* If URL is not local, redirect to error page. */
 if (strncmp(*url, localURL, sizeof(localURL)) == 0)
 {
 /* url was allocated using xvt_mem_alloc.

According to documentation, if we want to
change url, it must be freed using
xvt_mem_free to avoid memory leaks. */

xvt_mem_free(*url);

Controls

 /* Allocate memory for url based on the length of
our new URL */

 *url = xvt_mem_alloc(sizeof(errURL));

 /* Copy the new URL into url */
 strcpy(*url, errURL);
 }
 /* Returning TRUE notifies calling function to process

the URL in url Returning FALSE notifies the
calling function not to process the URL in url */

 return TRUE;
}

long XVT_CALLCONV1 myWindow_eh(WINDOW win, EVENT *ep)
{
 switch(ep->type)
 {
 case E_CREATE:
 ...
 xvt_html_set_url_intercept(xvt_win_get_ctl(win,

HTML_CTL), myInterceptHdlr);
 ...
 break;
...
}
return (*save_eh)(win, ep);
}

Detailed information on the xvt_html_* functions can be found in
the XVT Portability Toolkit Reference.
8-39

8.3.13. Icons
XVT icon controls let you display platform-specific icons in dialogs
and windows. The actual description (or resource definition) of an
icon is handled differently for each XVT platform. However, once
icons are described, XVT can portably include them in windows and
dialogs, as well as supporting some types of operations on them.

When creating icon controls with xvt_win_create_def and
xvt_ctl_create_def, you use WIN_DEF data structures. The WIN_DEF
structure contains a substructure used for icon control definitions:

XVT Portability Toolkit Guide

8-40

typedef struct s_win_def {
WIN_TYPE wtype;
RCT rct;
char *text;
UNIT_TYPE units;
union {

...
struct {

int ctrl_id;
int icon_id;
long flags;

} ctl;
...

} v;
} WIN_DEF;

When creating icon controls, set the icon_id field to the ID of an icon
resource. You must define the icon resource non-portably in your
XRC or native resource file.

Icon controls do not generate events in XVT, and cannot be assigned
the keyboard focus.

See Also: For more information about resource definitions for icons, see the
XVT Platform-Specific Books.

Icon Information

WIN_TYPE WC_ICON
XRC object name ICON
Restrictions See caveats below
Icon Attributes

Size / location xvt_vobj_move,
xvt_vobj_get_client_rect, or
xvt_vobj_get_outer_rect

Visibility xvt_vobj_set_visible
WINDOW info xvt_win_get_ctl or

xvt_vobj_get_type
Parent xvt_vobj_get_parent
Control ID xvt_ctl_get_id

Controls

Here are some caveats regarding icon controls:
• xvt_vobj_destroy is supported only for icons in windows.
• Icon controls in windows can only be created through

xvt_ctl_create_def, xvt_win_create_def, and xvt_win_create_res. The
xvt_ctl_create function cannot be used, because it lacks the
arguments needed to specify the resource ID of the icon.

• Icon controls can be created in dialogs via xvt_dlg_create_res
and xvt_dlg_create_def.

Event Handling
typedef struct s_ctlinfo {

WIN_TYPE type; /* WC_ICON */
 WINDOW win; /* WINDOW of control */

union {
...
struct s_icon {

int reserved;
/* reserved (unused) */

} icon;
 ...
 } v;
} CONTROL_INFO, * CONTROL_INFO_PTR;

Icons cannot generate events, because the user cannot manipulate
them.
8-41

8.3.14. Text Edit Objects
An XVT text edit object is a fully functional, multi-line edit control
supporting many of the functions of other controls. These functions
include:

xvt_ctl_get_colors xvt_vobj_get_client_rect
xvt_ctl_get_id xvt_vobj_get_data
xvt_ctl_get_font xvt_vobj_get_outer_rect
xvt_ctl_set_colors xvt_vobj_get_parent
xvt_ctl_get_type xvt_vobj_is_focusable
xvt_ctl_set_font xvt_vobj_raise
xvt_scr_set_focus_vobj xvt_vobj_set_data
xvt_scr_get_focus_vobj xvt_vobj_set_enabled
xvt_vobj_move xvt_vobj_translate_points

XVT Portability Toolkit Guide

8-42

Strictly speaking, text edit objects are not native controls at all. They
are implemented on top of the XVT API, using graphics primitives,
graphics text, and XVT windows to create the object components.
This is why you can place text edit objects only in windows, not in
dialogs.

Text Edit Information

WIN_TYPE WC_TEXTEDIT
XRC object name TEXTEDIT

8.3.14.1. Text Edit Capabilities
The text edit system is quite flexible. It allows you to:

• Insert and manipulate the text from your program, or you can
let the user edit the text with the usual keyboard and mouse
conventions

• Control whether the text is wrapped to a margin
• Have a border around the text edit area
• Limit the number of characters per paragraph (useful in form

entry applications), and limit the text to one paragraph
• Force the text to be read-only
• Control whether cut, copy, or paste are allowed
• Control whether horizontal and vertical auto-scrolling are

enabled

• Change any attributes (wrapping, margin, physical font, etc.)

at any time

Controls

Because of its flexibility, you can use the text edit system for a wide
variety of applications. Two typical applications are form entry,
when you have several, completely unrelated text edit areas per
window (Figure 8.4), and file editing (with or without wrapping), in
which the document occupies the entire window (Figure 8.5).

Figure 8.4. Three text edit objects in a window
8-43

Figure 8.5. A window showing part of a single, borderless
text edit object

XVT Portability Toolkit Guide

8-44

8.3.14.2. Text Edit Terminology and Geometry
Text Edit Objects

A text edit object consists of text divided into paragraphs, each
terminated with a carriage return. If word wrapping is enabled,
each paragraph can appear as one or more lines of text.

View Rectangle
The length of a line and the total number of lines can be very
large, so normally not all of the text appears on the screen. Only
the part within the view rectangle can be seen. The application
program or the user can scroll the text so that the unseen part
enters the view rectangle.

Border Rectangles
Optionally, you can request the text edit system to draw a border
rectangle around the view rectangle. If you do so, the view
rectangle is inset by 4 pixels inside the border rectangle. On the
bottom it may be inset by a few more pixels, because the bottom
coordinate of the view rectangle that you request may be
reduced so that an integral number of text lines will appear.

Coordinates
Coordinates for the border and view rectangles are always
window-relative. Although each text edit object looks like a
window, it is not.

Figure 8.6 shows the relationships between the screen, the window,
and the border and view rectangles of a text edit object. The text
around the screen indicates that only a fraction of the text actually
shows in the view rectangle.
Figure 8.6. Text edit object’s view and border rectangles

ck brown fox jumped over the lazy dogs. The
The quick brown fox jumped over the lazy do

e quick brown fox jumped over the lazy dog. T
The quick brown fox jumped over the lazy d

he quick brown fox jumped over the lazy dog
n fox jumped over the lazy dog. The quick br

The quick brown fox jumped over the lazy
he quick brown fox jumped over the lazy dog
e quick brown fox jumped over the lazy dogs

umped over th
ped over the la
azy dogs. The

screen
boundary

window

view
rectangle

optional
border

Controls

8.3.14.3. Using the Text Edit System
This section describes techniques for manipulating text edit objects:

• Creating text edit objects
• Text edit handles
• Text edit events
• Setting and getting properties
• Loading text
• Retrieving text
• Selecting text
• Tab support
• Scrolling
• Clearing and deleting text

Creating Text Edit Objects

Tip: To create one or more text edit objects:

Call xvt_tx_create, xvt_tx_create_def, xvt_win_create_res, or
xvt_win_create_def.

You specify the window in which the object appears, the border
rectangle, the logical font, the margin, the character limit, and the
attributes.
8-45

Attributes (specified by TX_* constants) determine the following
characteristics:

• If text scrolls automatically when the user drags the
mouse outside of the view rectangle

• If there is a border
• If cut, copy, and paste are allowed
• If more than one paragraph can be entered
• If the text can be edited
• If word wrap is enabled

See Also: For a complete list of text attributes that you can set, refer to the XVT
Portability Toolkit Reference.

Tip: To form the attribute argument:
OR together desired constants
(e.g., TX_ONEPAR | TX_READONLY).

XVT Portability Toolkit Guide

8-46

The margin is the maximum number of pixels allowed per line when
word wrap is enabled. A word that would extend past the margin is
placed on the next line. If the word is longer than a line, it is split at
the margin. Use the character limit for fixed-length fields in form-
entry applications; this limit restricts the number of characters that
can be typed into a paragraph.

After the text edit object is created, you can change all of the above
characteristics, except for the window. In addition, you can use the
xvt_tx_set_* functions to change the colors used for text, border, and
background, and the average number of characters between tab
stops.

WIN_DEF Data Structures

When specifying text edit objects with xvt_win_create_def
and xvt_tx_create_def, you use WIN_DEF data structures. The WIN_DEF
structure contains a substructure designed for text edit object
definitions:

typedef struct s_win_def {
WIN_TYPE wtype;
RCT rct;
char *text;
UNIT_TYPE units;
XVT_COLOR_COMPONENTS *ctlcolors;
union {

...
struct {

unsigned short attrib;
XVT_FNTID font_id;
short int margin;

short int limit;
short int tx_id;

} tx;
...

} v;
} WIN_DEF;

The fields in the tx substructure reflect the attributes of text edit
objects, and are the same attributes specified when you create a text
edit object with the function xvt_tx_create.

TXEDIT Handles

Text edit objects are identified by a TXEDIT handle which is
equivalent to a WINDOW handle.

Tip: To get the TXEDIT value for a text edit object, given its resource ID:
Call xvt_win_get_tx.

Controls

Tip: To get the resource ID for a text edit object, given the TXEDIT value:
Call xvt_ctl_get_id.

Tip: To retrieve text edit objects for a particular window or for the entire
application from a list internally maintained by the Portability
Toolkit:

Call xvt_tx_get_next_tx.

xvt_tx_get_next_tx is passed a text edit object and a window handle. If
the text edit object is NULL_TXEDIT, then the first text edit object in
the list is returned. Otherwise, the text edit object passed must be
valid, and the text edit object that immediately follows it in the list
is returned.

If a valid window is passed to xvt_tx_get_next_tx, then xvt_tx_get_next_tx
returns the next text edit object belonging to the window that was
passed. If the passed window is NULL_WIN, then the next text edit
object in any window is returned.

NULL_TXEDIT is returned when the end of the list is reached.

Implementation Note: You should not assume consistency between platforms or between
sequences of calls to xvt_tx_get_next_tx concerning the order in which
text edit objects are returned.

Example: This code fragment shows how to use xvt_tx_get_next_tx to clear all
text edit objects in an application:
8-47

TXEDIT tx = NULL_TXEDIT;
...
while (NULL_TXEDIT !=

(tx = xvt_tx_get_next_tx(tx, NULL_WIN)))
xvt_tx_clear(tx);

XVT Portability Toolkit Guide

8-48

Event Handling
typedef struct s_ctlinfo {
 WIN_TYPE type; /* WC_TEXTEDIT */
 WINDOW win; /* WINDOW of control */
 union {

...
struct s_textedit {

BOOLEAN focus_change;
/* is it a focus change? */

BOOLEAN active;
 /* if so: gaining focus? */

} textedit;
...

 } v;
} CONTROL_INFO, * CONTROL_INFO_PTR;

Based on the event information above, you can determine the
following:

• If focus_change is FALSE, then the contents of the text edit object
have changed. You can call xvt_tx_get_line to determine the
new contents of the text edit object, and compare this with the
previous contents of the text edit object.

• If focus_change is TRUE, and active is TRUE, then the text edit
object gained the keyboard focus.

• If focus_change is TRUE, and active is FALSE, then the text edit
object lost the keyboard focus.

Setting Properties
Tip: To change various properties of a text edit object:
xvt_tx_set_attr
xvt_tx_set_limit
xvt_tx_set_margin
xvt_tx_set_tabstop

Most of these functions cause the text to reset, which, among other
things, re-wraps every paragraph. You can also reset a text edit
object explicitly with xvt_tx_reset.

Note: If the text edit colors (foreground, background, and border) have not
been set explicitly, these colors can be changed indirectly using a
call to xvt_win_set_colors.

Controls

Getting Properties

Tip: To retrieve current values, call one of the following functions:
xvt_tx_get_attr
xvt_tx_get_limit
xvt_tx_get_margin
xvt_tx_get_tabstop
xvt_tx_get_view

Tip: To retrieve various text edit sizes, call one of the following
functions:

xvt_tx_get_num_chars
Number of characters in a given line.

xvt_tx_get_num_lines
Total number of lines in a text edit object.

xvt_tx_get_num_par_lines
Number of lines in a given paragraph.

xvt_tx_get_num_pars
Total number of paragraphs in a text edit object.

Loading Text

Tip: To load text into a previously created text edit object:
Call xvt_tx_add_par.

Tip: To change existing text:
8-49

Call xvt_tx_append, xvt_tx_rem_par, and
xvt_tx_set_par.

Tip: When loading a large amount of text (with multiple calls to
xvt_tx_add_par, for instance), you can save a lot of time by suspending
screen updating and word wrapping with xvt_tx_suspend. When you
want updating to resume,
call xvt_tx_resume.

XVT Portability Toolkit Guide

8-50

Retrieving Text

Tip: To retrieve the text from a text edit object (e.g., for searching or
saving to a file):

Call xvt_tx_get_line, which returns a pointer to the text.

You must bracket a text-retrieving call to xvt_tx_get_line with two
special calls to lock and unlock the text buffer, and you must do this
for each line you want to access. This eliminates the overhead of
copying the text to a buffer if it could be accessed in place.

Selecting Text

Tip: To explicitly set the text selection:

Call xvt_tx_set_sel.

Normally, of course, the user selects text interactively by dragging
the mouse or using the arrow keys with the Shift key held down.

Tip: To get the current selection:

Call xvt_tx_get_sel.

When the user clicks in the view rectangle of a text edit object, XVT
automatically makes that object active and displays a caret.

Text Edit Tab Stops

Text edit controls automatically provide support for tabs. XVT
sets tab stops at multiples of a predetermined tab stop distance. The

tab stop distance depends on the font and size of the text—it is
calculated as eight times an average character width. Tab characters
in the text edit text indicate that the next character after the tab is to
be positioned at the next tab stop to the right of the current position.
Tab characters are not converted to spaces in the text.

Tip: To put tabs into the text programmatically:

Call xvt_tx_add_par, xvt_tx_append, or xvt_tx_set_par.

Reading text containing tabs from a text edit object with the
xvt_tx_get_line function returns a character string containing
the ASCII tab character.

Controls

Scrolling

There are two kinds of scrolling, automatic and manual:
Automatic scrolling

Occurs without your application being involved. The text edit
system senses when the mouse is being dragged (or the caret
is moved) outside of the view rectangle and scrolls the text
appropriately (also called auto-scrolling).

Manual scrolling
Takes place when your application calls xvt_tx_scroll_hor or
xvt_tx_scroll_vert. If you want, you can call these when the user
operates the scrollbars at the sides of the document window that
contains the text edit object. (You probably won’t want to use
the scrollbars this way if the window contains more than one
text edit object.)

If the window does have scrollbars, you will want to update the
thumb position whenever the text scrolls, even if by automatic
scrolling. You can establish a scroll callback function with
xvt_tx_set_scroll_callback. The text edit system calls this function
whenever the scrollbars have to be updated.

The primary information passed to your scroll callback function is
the location of the first character in the view relative to the start of
the text document in the text edit object. If this is non-zero, it means
that the text is scrolled up and/or to the left in the view. You can also
get this location without waiting for a scroll callback by calling
8-51

xvt_tx_get_origin.

See Also: For more information on how XVT controls and GUI components
handle scrolling, see Chapter 13, Scrolling.

Clearing Text and Deleting Text Edit Objects

Tip: To clear all text from a text edit object:
Call xvt_tx_clear.
(Note: The empty object still exists.)

Tip: To entirely eliminate a text edit object:
Call xvt_tx_destroy.

See Also: For more information about manipulating text edit objects, see the
xvt_tx_* functions in the XVT Portability Toolkit Reference.

XVT Portability Toolkit Guide

8-52

8.3.14.4. Text Edit Size Limits
A number of limits constrain the size of text edit objects. The first
limit is set by the type, unsigned short, used for paragraph, line, and
character numbers. Since unsigned short is sixteen bits (on most
systems), this limit is 65,535 (64KB - 1). So the number of lines
allowed in any one paragraph is theoretically 64KB.

A second limit, however, is the total number of lines allowed in a
text edit, which is also 64KB. Thus if an average paragraph has four
lines, the number of paragraphs would be limited to 16KB.

In addition, because of the way information is stored for each
paragraph, the actual limit for the total number of characters depends
on the number of lines in that paragraph (which in turn depends on
margin sizes and whether word wrap is on). This value is much
smaller than the theoretical limit of 64KB, being approximately
(32KB – 2 * number of lines).

With word wrap on, the number of lines increases as the number of
characters increases. As a result, there is no easy answer to the
question, “How many characters can be put in one paragraph?”
Assuming an average line length of 80 characters, the character limit
would be somewhere around 32,000.

8.3.15. Treeview Controls
Treeview controls give XVT applications the ability to display
hierarchically-oriented information. The classic example of a tree is
the explorer window for viewing directories and files.
The Treeview control is a WINDOW of type WC_TREEVIEW.

The treeview is a commonly seen GUI feature and the ability to
provide trees within production applications is a powerful feature
that extends the utility of an XVT application.

Tree-specific types
void *XVT_TREEVIEW_NODE;

typedef enum e_treeview_node_type {

XVT_TREEVIEW_NODE_TERMINAL, /* leaf - no children */

XVT_TREEVIEW_NODE_NONTERMINAL, /* branch - may have
children */

} XVT_TREEVIEW_NODE_TYPE;

Controls

typedef XVT_CALLCONV_TYPEDEF(

BOOLEAN, XVT_TREEVIEW_CALLBACK,

(WINDOW ctl_win, XVT_TREEVIEW_NODE node));

Treeview Attribute Constants
#define TREEVIEW_DEFAULT …/* default -- implies *_STYLE_NONE,

*_EXPAND_ONE, and *_SELECT_NONE */

#define TREEVIEW_NO_BORDER …/* no border around control */

#define TREEVIEW_SHOW_ROOT_NODE…/* draw root node */

#define TREEVIEW_STYLE_NONE …/* no tree lines drawn */

#define TREEVIEW_STYLE_ORTHGONAL …/* squared connections */

#define TREEVIEW_STYLE_SLANT …/* slanted connections - ***NOT
IMPLEMENTED

AT THIS TIME*** */

#define TREEVIEW_EXPAND_ONE …/* only expand one node */

#define TREEVIEW_EXPAND_ALL …/* expand node and all subnodes */

#define TREEVIEW_SELECT_NONE …/* no selection allowed */

#define TREEVIEW_SELECT_ONE …/* one selection allowed */

#define TREEVIEW_SELECT_MANY …/* many slections allowed */
8-53

Treeview API Library Functions

The following functions are available in the Treeview API:
xvt_treeview_add_child_node

Add a child treeview node to existing treeview node
xvt_treeview_collapse_node

Collapses node
xvt_treeview_create

Creates treeview control
xvt_treeview_create_node

Creates a treeview node
xvt_treeview_destroy_node

XVT Portability Toolkit Guide

8-54

Destroys treeview node
xvt_treeview_expand_node

Expands node
xvt_treeview_get_attributes

Get the attributes for the treeview control
xvt_treeview_get_child_node

Get a child node from a parent node
xvt_treeview_get_line_height

Get line height of treeview node
xvt_treeview_get_node_callback

Get the node call back function
xvt_treeview_get_node_data

Get the node data
xvt_treeview_get_node_image_collapsed

Get the collapsed image for a node
xvt_treeview_get_node_image_expanded

Get the expanded image for a node
xvt_treeview_get_node_image_item

Get the item image for a node

xvt_treeview_get_node_num_children

Get the number of child nodes for a node
xvt_treeview_get_node_num_vis_children

Get the number of visible child nodes for a node
xvt_treeview_get_node_string

Get the item text for a node
xvt_treeview_get_node_type

Get node type
xvt_treeview_get_parent_node

Get parent node
xvt_treeview_get_root_node

Get root node form treeview control

Controls

xvt_treeview_node_selected

Get node selection state
xvt_treeview_remove_child_node

Remove child node from list
xvt_treeview_resume

Resume updating of treeview control
xvt_treeview_set_attributes

Set the attributes for treeview control
xvt_treeview_set_line_height

Set line height for a node
xvt_treeview_set_node_callback

Set the node call back function
xvt_treeview_set_node_data

Set the node data
xvt_treeview_set_node_image_collapsed

Set the collapsed image for a node
xvt_treeview_set_node_image_expanded

Set the expanded image for a node
8-55

xvt_treeview_set_node_image_item

Set the item image for a node
xvt_treeview_set_node_string

Set the item text for a node
xvt_treeview_set_node_type

Set node type
xvt_treeview_suspend

Suspend updating of treeview control
xvt_treeview_update

Force update of treeview control

Detailed information on the xvt_treeview_* functions can be found
in the XVT Portability Toolkit Reference.

XVT Portability Toolkit Guide

8-56

8.4. Control Attributes
XVT allows the application to get or set any control’s state or
change its attributes. This section discusses two attributes that are
apparent to end users—font and color.

8.4.1. Control Fonts
A control font is the XVT logical font used for all text in a control.
Applications can set and query XVT logical fonts for all XVT
Portability Toolkit (PTK) controls that contain text.

Note: Fonts for window titles and menu items cannot be set with XVT
functions. Text edit objects have their own functions for setting
logical fonts.

An XVT control may inherit its logical font from its immediate
parent window or dialog, or from the application, or if no control
font is set at any of these levels, from the native windowing system.
The font in which control text is rendered depends on the most
specific font set by the application (in order):

• Font set for the specific control
• Default font set for all controls of the container window

or dialog
• Default font set for all controls of the application

• Default font set for all controls of the system set by

the native platform

The control font can be set at control creation time. When creating a
window and its contents, use an array of WIN_DEF structures and
xvt_res_get_win_def or xvt_res_get_dlg_def (see section 3.3.2 on page 3-7).
Alternatively, control fonts can be set after a control is created (see
section 15.4 on page 15-10).

Caution: You may need to increase the font cache size for applications that set
and use a large number of control fonts.

See Also: For more information on how to increase the font cache size, refer to
the description of ATTR_FONT_CACHE_SIZE in the attributes portion
of the XVT Portability Toolkit Reference.

Controls

8.4.1.1. Setting Fonts on Individual Controls
Tip: To set the logical font for a single control:

Call xvt_ctl_set_font.

Tip: To obtain the current logical font for a single control:

Call xvt_ctl_get_font.

Unless a control font is specifically set for a control, xvt_ctl_get_font
returns NULL_FNTID.

Note: Even if the application sets the font of a control, no E_SIZE event is
issued. The control does not automatically resize. If the font was
enlarged, that control’s label(s) may be clipped.

8.4.1.2. Setting Default Container Control Fonts
Tip: To set the default logical font for all controls in a window or dialog:

Call xvt_win_set_ctl_font.

Tip: To obtain the default logical font for all controls in a window or
dialog:

Call xvt_win_get_ctl_font.

Note: Unless a default control font is specifically set for the container,
xvt_win_ctl_get_font will return NULL_FNTID.
8-57

8.4.1.3. Setting the Default Application Control Font
The attribute ATTR_APP_CTL_FONT_RID can be used to set the
resource ID of the application’s default control font (if not set, then
XVT uses the native platform default control font). If you choose to
set this attribute, do so prior to calling xvt_app_create.

Example: The following code fragments demonstrate how
ATTR_APP_CTL_FONT_RID is used to set the default application
control font.

In the application header file:
#define MY_APP_CTL_FONT 10

In the application XRC file:
font MY_APP_CTL_FONT "helvetica" 12 bold italic

XVT Portability Toolkit Guide

8-58

In the application source code (before calling xvt_app_create):
xvt_vobj_set_attr(NULL_WIN, ATTR_APP_CTL_FONT_RID,

(long) MY_APP_CTL_FONT);

8.4.2. Control Colors
A control color is the color XVT selects for a component of a
control, such as foreground, background, border, etc. Applications
can set and query XVT colors for the most significant XVT
Portability Toolkit (PTK) control components; for more details,
refer to section 8.4.2.1, next.

Note: Although you can set the colors of individual controls inside a
window or dialog, XVT does not provide functions that can be used
to set the color of a window or dialog’s window decorations.

An XVT control inherits its component colors from its parent
window or dialog, or from the application, or if no control
component colors are set at any of these levels, from the native
windowing system. A single control inherits each component color
separately. The colors in which control components are rendered
depend on the most specific component colors set by the application
(in order):

• Colors set for the specific control
• Default colors set for all controls of the container window

or dialog
• Default colors set for all controls of the application

Imp
• Default colors set for all controls of the system set by
the native platform

lementation Note: Users may set default control component colors through native
mechanisms, such as Motif application defaults files, Win32 control
panels, and Macintosh default color tables.

Control colors can be set at control creation time. When creating a
window and its contents, use an array of WIN_DEF structures and
xvt_res_get_win_def or xvt_res_get_dlg_def (see section 3.3.2 on page 3-7).
Alternatively, control colors can be set after a control is created.

Controls

8.4.2.1. Control Component Colors
Each native platform supports different control component colors,
but there is much overlap. XVT portably supports the most
significant component colors, even though some component colors
are not supported natively on all platforms. For details, refer to
Figure 8.7.

Note: In some cases, an XVT component name does not correspond
directly to the name used by the native platform for the same
component. However, if you set the color value for an XVT control
component, you will get the appropriate behavior on all platforms.

Color components of XVT controls are set with data stored in arrays
of XVT_COLOR_COMPONENT data structures:

typedef s_xvt_color_component {
XVT_COLOR_TYPE type; /* color component */
COLOR color; /* XVT color value */

} XVT_COLOR_COMPONENT;

The following are valid XVT control color components defined
for XVT_COLOR_TYPE:

XVT_COLOR_FOREGROUND Control text and the arrows on
scrollbars

XVT_COLOR_BACKGROUND Fill color of rectangular region
occupied by control

XVT_COLOR_BLEND Secondary background for some
8-59

controls so they blend into their
container window’s background
without visual indication of a border

XVT_COLOR_HIGHLIGHT Visual indication that a control has
keyboard focus

XVT_COLOR_BORDER Outside edge of control
(rectangular)

XVT_COLOR_TROUGH Slider area behind scrollbar thumb
XVT_COLOR_SELECT Indication that a control has been

selected
XVT_COLOR_NULL Value indicating last element of

XVT_COLOR_COMPONENT array

You may set as many or as few of these component values as are
needed for your application.

XVT Portability Toolkit Guide

8-60

XVT_COLOR_BACKGROUND
(XVT/Mac, XVT/XM)

XVT_COLOR_HIGHLIGHT
(XVT/XM)

XVT_COLOR_SELECT
(XVT/XM)

XVT_COLOR_BACKGROUND
(XVT/Win321)

XVT_COLOR_FOREGROUND
(XVT/Mac, XVT/Win321,

XVT_COLOR_BORDER
(XVT/Mac)

XVT_COLOR_BLEND
(XVT/Mac, XVT/Win32, XVT/XM)

XVT/XM)

XVT_COLOR_BLEND

XVT_COLOR_FOREGROUND XVT_COLOR_FOREGROUND
(XVT/Win322)

XVT_COLOR_SELECT
(XVT/XM)

XVT_COLOR_BORDER
(XVT/Mac)

XVT_COLOR_HIGHLIGHT
(XVT/XM)
Figure 8.7. XVT control component colors (part 1 of 4)

1 Unavailable with Windows 95.
2 Unavailable on some Win32 platforms.

XVT_COLOR_BLEND

XVT_COLOR_FOREGROUND XVT_COLOR_FOREGROUND
(XVT/Win322)

XVT_COLOR_SELECT
(XVT/XM)

XVT_COLOR_BORDER
(XVT/Mac)

XVT_COLOR_HIGHLIGHT
(XVT/XM)

Controls

XVT_COLOR_BACKGROUND
(XVT/XM)

XVT_COLOR_HIGHLIGHT
(XVT/XM)

XVT_COLOR_BORDER
(XVT/Mac)

XVT_COLOR_TROUGH

XVT_COLOR_BACKGROUND
(XVT/XM)

XVT_COLOR_FOREGROUND3

XVT_COLOR_HIGHLIGHT
(XVT/XM)

XVT_COLOR_BORDER
(XVT/Mac)

XVT_COLOR_BACKGROUND3

scrollbar
thumb

XVT_COLOR_BORDER
(XVT/Mac)
8-61

Figure 8.7. XVT control component colors (part 2 of 4)

3 For XVT/XM, foreground and background colors are
reversed on selection. For XVT/Mac monochrome systems,
foreground and background colors are reversed on selection.
For XVT/Mac color systems, set selected text color on the
Color Control Panel.

XVT_COLOR_FOREGROUND

XVT_COLOR_BLEND

XVT Portability Toolkit Guide

8-62

XVT_COLOR_BACKGROUND

XVT_COLOR_HIGHLIGHT
(XVT/XM)

XVT_COLOR_BORDER
(XVT/Mac) XVT_COLOR_BORDER

(XVT/Mac)

XVT_COLOR_FOREGROUND

XVT_COLOR_TROUGH
(XVT/Mac, XVT/XM)

XVT_COLOR_BACKGROUND

XVT_COLOR_HIGHLIGHT
(XVT/XM)

XVT_COLOR_BORDER
(XVT/Mac)

XVT_COLOR_BLEND
(XVT/Mac, XVT/XM)

XVT_COLOR_FOREGROUND

XVT_COLOR_BORDER
(XVT/Mac)

XVT_COLOR_BACKGROUNDXVT_COLOR_BORDER

XVT_COLOR_BACKGROUND
(XVT/XM)

scrollbar
thumb

XVT_COLOR_BLEND
(XVT/XM)

XVT_COLOR_BACKGROUND
(XVT/XM)

OR
XVT_COLOR_FOREGROUND

(XVT/XM)

XVT_COLOR_BACKGROUND
(XVT/XM)

See Note 4 below concerning
similarities in color between
the list box, the list edit, and
the list button (for XVT/XM)
Figure 8.7. XVT control component colors (part 3 of 4)

4 On XVT/XM only, the colors in the dropdown list (of the list
button and the list edit) are the same as for the list box itself.

5 For XVT/Mac monochrome systems, foreground and
background colors are reversed on selection. For XVT/Mac
color systems, set selected text color on the Color Control Panel.

XVT_COLOR_HIGHLIGHT
(XVT/XM)

(XVT/Mac, XVT/XM)

XVT_COLOR_FOREGROUND XVT_COLOR_BLEND
(XVT/Mac ,XVT/Win32,

XVT_COLOR_BORDER
(XVT/Mac)

OR
XVT_COLOR_FOREGROUND

(XVT/XM)

XVT/XM)

Controls

XVT_COLOR_FOREGROUND

XVT_COLOR_BLEND
(XVT/Mac, XVT/Win32)

XVT_COLOR_BACKGROUND
(XVT/XM)

XVT_COLOR_BORDER
(XVT/Mac)

XVT_COLOR_BLEND
(XVT/XM)

XVT_COLOR_BLENDXVT_COLOR_FOREGROUND6

(XVT/Mac, XVT/XM)

XVT_COLOR_BACKGROUND6

(XVT/Mac)
8-63

Figure 8.7. XVT control component colors (part 4 of 4)

6 Available for icons with one bit-plane only.
7 Set text edit colors (illustrated here for completeness)

with xvt_ctl_set_colors .

Text color7

Background color7

Border color7

XVT Portability Toolkit Guide

8-64

8.4.2.2. Setting Colors on Individual Controls
Tip: To set the component colors for a single control:

Call xvt_ctl_set_colors.

Tip: To obtain the current component colors for a single control:

Call xvt_ctl_get_colors.

Note: Unless a control color component is specifically set for a control,
xvt_ctl_get_colors returns NULL.

8.4.2.3. Setting Default Container Control Colors
Tip: To set the default component colors for all controls in a window or

dialog:
Call xvt_win_set_ctl_colors.

Tip: To obtain the default component colors for all controls in a window
or dialog:

Call xvt_win_get_ctl_colors.

Note: Unless a control color component is specifically set for a container,
xvt_win_get_ctl_colors returns NULL.

8.4.2.4. Setting Default Application Control Component Colors
The attribute ATTR_APP_CTL_COLORS can be used to set the
application’s default control component colors (if not set, then XVT

uses the native platform’s default control colors). The attribute is set
to the address of an XVT_COLOR_COMPONENT array. If you choose to
set this attribute, do so prior to calling xvt_app_create and do not
change it again once set.

Example: This code demonstrates how ATTR_APP_CTL_COLORS is used to
set default application control component colors (before calling
xvt_app_create):

static XVT_COLOR_COMPONENT ctl_colors[] = {
{XVT_COLOR_FOREGROUND, COLOR_BLACK},
{XVT_COLOR_BLEND, COLOR_WHITE},
{XVT_COLOR_BACKGROUND, COLOR_BLUE},
{XVT_COLOR_NULL, 0}

};
...
xvt_vobj_set_attr(NULL_WIN, ATTR_APP_CTL_COLORS,

(long) ctl_colors);

Controls

8.5. Control Mnemonics
A mnemonic character is a character in the title of a control or menu
item used (by the application’s end user) to select or invoke the
control or menu item via keyboard input. Mnemonic characters may
be typed by application users in lieu of mouse selection and thus
provide one form of keyboard navigation. The mnemonic character
(and the keyboard key that is pressed to select the item) is typically
indicated by an underlined character in the control or menu item
text:

Help OK Extract

Implementation Note: You should refer to the look-and-feel guidelines for specific native
platforms to determine the best mnemonic characters for your
application.

8.5.1. Setting Control Mnemonics
The mnemonic character is immediately preceded by a tilde (~) in
the title text of the control:

~Help ~OK E~xtract

The methods for setting a mnemonic character in the title of non-
editable control (pushbutton, check box, radio button, static text, or
group box) in a window or dialog are:

• Set the mnemonic character in the title parameter of the
8-65

xvt_ctl_create function
• Set mnemonic characters in the text fields of the array of

WIN_DEF structures passed to xvt_win_create_def,
xvt_dlg_create_def, or xvt_ctl_create_def

• Set the mnemonic character in the text field of an XRC control
statement

• Set the mnemonic character in the title parameter of the
xvt_vobj_set_title function

Implementation Note: Control mnemonics are not implemented on XVT/XM and
XVT/Mac. Mnemonic characters on controls are not supported by
the native look-and-feel of these platforms. When a mnemonic
character is set for a control on these platforms, the character is
retained internally by the toolkit, but not displayed.

XVT Portability Toolkit Guide

8-66

8.5.2. Getting Control Mnemonics
You cannot directly extract a mnemonic character from a control
title. You can, however, obtain a title text string, with any embedded
mnemonic character, using either of the following approaches:

• Get the mnemonic character from the text fields in the array of
WIN_DEF data structure generated from resources by a call to
xvt_res_get_win_def or xvt_res_get_dlg_def

• Get the mnemonic character from the title returned by a call
to xvt_vobj_get_title

Implementation Note: All set mnemonic characters are returned in the titles by these
functions on XVT/XM and XVT/Mac, even though mnemonic
characters are not displayed in controls on these platforms.

8.5.3. Processing Mnemonic Characters

Dialogs

The processing of mnemonic characters in dialog controls is handled
automatically by XVT and the native platforms. No special
processing of characters is required (character events generally are
not sent to dialog event handlers).

Windows

When a control in a window has focus and the user types characters,
characters not processed internally by the control (both mnemonic

and non-mnemonic) are passed as E_CHAR character events to the
control’s parent (container) window. Your application event handler
then must process these characters for the desired behavior (focus
change, selection, etc.).

Keyboard navigation is not automatic in XVT windows. You may
use the XVT navigation object (see section 6.6 on page 6-14) to
handle E_CHAR events for keyboard navigation in windows, or you
may implement your own navigation mechanism.

When a particular control does not have focus and the user types
characters, E_CHAR events are delivered to the window that has
focus. The action of typing characters (mnemonic or not) does not
affect window focus. The attribute ATTR_PROPAGATE_NAV_CHARS
controls the propagation of characters from controls to the parent
window. To insure that sufficient character events occur for
keyboard navigation, this attribute should be set to a value of TRUE.

Controls

See Also: For more information on E_CHAR events, refer to section 4.5.1 on
page 4-16.
For more information on the propagation of character events to
window event handlers, see ATTR_PROPAGATE_NAV_CHARS in the
XVT Portability Toolkit Reference.

Example: This code demonstrates how to process character events to trap
mnemonic characters:
XVTV_CHAR mbc[XVT_MAX_MB_SIZE + 1];
XVTV_CHAR mbs[XVT_MAX_MB_SIZE * 255];
XVT_CHAR *mbs_ptr;
SLIST slist;
SLIST_ELT slist_elt;
WINDOW child;
WIN_TYPE wtype;

switch(ep->type) {
case E_CHAR:

/* only platforms that support mnemonics */
#if (XVTWS == WIN32WS)

/* convert the character */
memset(mbc, 0, XVT_MAX_MB_SIZE + 1);
xvt_str_convert_wc_to_mb(mbc, ep->v.chr.ch);

/* do not process if length is greater than 1 */
if(xvt_str_get_byte_count(mbc) == 1) &&

xvt_str_is_alnum(mbc)) {
/* convert character for processing and

get the children of win */

xvt_str_convert_to_upper(mbc, mbc, 1);
8-67

slist = xvt_win_list_wins(win, 0L);
if(!slist)

break;

slist_elt = xvt_slist_get_first(slist);

/* process the children until a window
with the mnemonic is found */

while(slist_elt) {
child = (WINDOW)

(*xvt_slist_get_data(slist_elt));
/* only process controls with titles

that accept mnemonic characters */
wtype = xvt_vobj_get_type(child);

XVT Portability Toolkit Guide

8-68

switch(wtype) {
case WC_PUSHBUTTON:
case WC_RADIOBUTTON:
case WC_CHECKBOX:
case WC_TEXT:
case WC_GROUPBOX:

if (xvt_vobj_get_title(child, mbs,
XVT_MAX_MB_SIZE * 255))

break;
default:

slist_elt = xvt_slist_get_next(slist,
slist_elt);

continue;
} /* end switch(wtype) */

/* find mnemonic character in the title */
mbs_ptr = xvt_str_find_first_char(mbs,

"~");
if (mbs_ptr) {

mbs_ptr = xvt_str_get_next_char(mbs_ptr);
xvt_str_convert_to_upper(mbs_ptr, mbs_ptr, 1);
if (!xvt_str_compare_n_char(mbs_ptr, mbc, 1)) {

EVENT ep;
long flags;

/* get the first control after
a static object */

if ((wtype == WC_TEXT) ||
(wtype == WC_GROUPBOX)) {
slist_elt =

xvt_slist_get_next(slist,
slist_elt);

if (!slist_elt)
break;

child = (WINDOW)

(*xvt_slist_get_data

(slist_elt));
} /* end if (wtype) */

flags = xvt_vobj_get_flags(child)

if (!(flags & CTL_FLAG_INVISIBLE) &&
!(flags & CTL_FLAG_DISABLED)) {
memset(&ep, 0, sizeof(EVENT));
ep.type = E_CONTROL;
ep.v.ctl.id = xvt_clt_get_id(child);
ep.v.ctl.ci.type = wtype;
ep.v.ctl.ci.win = child;

Controls

switch(wtype) {
case WC_EDIT:

if (xvt_scr_get_focus_vobj()
!= child) {

ep.v.ctl.ci.v.edit.focus_change = TRUE;
ep.v.ctl.ci.v.edit.active = TRUE;

}
break;

case WC_LISTEDIT:
if (xvt_scr_get_focus_vobj()

!= child) {
ep.v.ctl.ci.v.listedit.focus_change = TRUE;
ep.v.ctl.ci.v.listedit.active = TRUE;

}
break;

} /* end switch(wtype) */

xvt_scr_set_focus_vobj(child);
xvt_win_dispatch_event(win, &ep);

} /* end if (!(flags...) */
} /* end if (!xvt_str_compare_n_char ...) */

} /* end if (mbs_ptr) */
slist_elt = xvt_slist_get_next (slist, slist_elt)
/* end while (slist_elt) */

/* Not found so beep */
xvt_scr_beep();
} /* end if (xvt_str_get_byte_count...) */

...
} /* end switch(ep->type) */
8-69

XVT Portability Toolkit Guide

8-70

Menus

9
MENUS

XVT-Design lets you arrange the menubar and its items. You can
specify resource identifiers, along with traits such as whether an item
shows a check mark when selected, or whether it is initially disabled.
This chapter contains background information about menus. If you
create menus in XVT-Design, you won’t need most of the detail in this
chapter.

A menu presents a set of possible selections that allow a user to
control the application. XVT menus are optionally attached to
task and top-level windows. (You cannot attach menus to modal
windows or dialogs.)

γ

9-1

Menus are composed of horizontally arranged items. When the
user selects an item, one of two things happens:

• An E_COMMAND event is generated
• A subsidiary (or cascading) menu drops down

The same things happen when the user selects an item on a
subsidiary menu. XVT menus are hierarchical—a given menu
can have many levels of nested menus within it (see Figure 9.1).

XVT Portability Toolkit Guide

9-2

Figure 9.1. Hierarchical menus on the Mac (on the Mac, Help
appears under the Apple menu)

Menus are usually defined before program execution as numbered
XRC resources. You can define new menus within your XVT
application, and assign them to windows during program execution.
You can convert resource-based menus to in-memory data structures
during program execution. XVT also provides functions to modify
existing menus, which is often necessary to reflect changing
program states, user selections, or modes.

If you specify the flag WSF_NO_MENUBAR when creating a window,
the window won’t have a menu and can’t have one assigned to it.
XVT provides platform-specific versions of the following menus:
File, Edit, Font/Style, and Help. Using these standard menus in your
XRC menu descriptions, as needed, ensures that your menus will be
portable.

See Also: For more information about using and compiling XRC resources,
see Chapter 5, Resources and XRC.
For more information about the menubar and menu XRC statements,
refer to the XVT Portability Toolkit Reference.

Menus

9.1. Menu Definitions
The following key definitions can help you understand the
capabilities of menubars and hierarchical menus in XVT:
Hierarchical menu

A menu that has one or more submenus. This menu/submenu
arrangement is hierarchical because each level includes the
next.

Menubar
A menubar is the “root” of the menu hierarchy tree. To design
menus, you must first start with a menubar. A menubar is
visually represented by a horizontal list of items across the
top of a screen or window. A menubar consists of a list of
pull-down menus.

Menu, pull-down menu
Menus appear horizontally across a menubar. Clicking on a
menu, or selecting it with a keyboard mnemonic, “pulls down”
a vertical list of items to choose from. A menu can also contain
submenus.

Submenu
A submenu is just like a menu, except that it can appear
anywhere in the menu hierarchy. When a submenu appears as
an item on a menu or submenu, some graphical indication (such
as an arrow) shows that the hierarchy extends below this item.
When the user pulls down a menu and moves the mouse to a
9-3

submenu, the list of menu items for that submenu appears.
Menu item

Menu items appear on a menu or submenu. A menu item can
either be a “leaf” of the menu tree, in which case it causes an
E_COMMAND event to be delivered to the application, or it can
be another submenu whose contents are displayed when the
user drags the mouse to this item.

Pop-up menu
A pop-up menu is a temporary menu displayed at a specified
location over a window. Unlike other types of menus, a pop-up
menu is not associated with a menubar. Instead, this type of
menu exists only within the context of the function that created
it, xvt_menu_popup.

XVT Portability Toolkit Guide

9-4

9.2. Menu Events
In XVT, menu selections generate either E_COMMAND events (for
most selections), or E_FONT events (for selections from the Font/
Style menu or the Font Selection dialog). These events are sent to the
event handler of the associated window. Each menu item is assigned
a unique numeric tag, usually represented by a constant in your
program. This tag is reported to the event handler, by means of the
event structure, when the E_COMMAND event is sent. Menu tags are
limited to the range from 1 to MAX_MENU_TAG (32,000).

Note: Because E_FONT events can be generated from Font/Style menu
selections, they are mentioned in this section. However, E_FONT
event information is very different from E_COMMAND event
information. In the case of the E_COMMAND, the menu item tag is
the only information passed to the event handler. However, in the
case of the E_FONT, more complex information is passed.

See Also: For more information about E_FONT events, see E_FONT in the XVT
Portability Toolkit Reference. Also refer to section 4.5.8 in Chapter
4, Events.

9.3. Defining Menus
You can define menus in two ways:

• In the XVT Resource Compiler (XRC)
• In MENU_ITEM data structures
9.3.1. XRC Menubar Definitions
You can define menus and other GUI components as resources
in XVT’s Resource Compiler (XRC). The functions
xvt_win_create and xvt_win_create_res require a menu
resource ID.

XVT-Design can create menubar definitions in XVT’s platform-
independent XVT Resource Compiler (XRC). This is the
simplest way to create menus.

Caution: You can edit the XRC file that XVT-Design creates as part of your
project. However, XVT discourages this, because it results in two
different pictures of your menu resources: one in your XVT-Design
project and one in the XRC file.

γ

Menus

See Also: For information on how to define menus and other GUI components
in XRC, see section 3.3.1 on page 3-4.

9.3.2. MENU_ITEM Data Structures
You can also define menus in XVT by using MENU_ITEM data
structures. This approach works only with the function
xvt_win_create_def. xvt_menu_popup, the function that creates pop-up
menus, creates a new hierarchy inside the MENU_ITEM tree.

Additionally, xvt_menu_set_tree can use in-memory data structures to
replace existing menus. (This is the only way to replace menus.)

Here is the MENU_ITEM data structure:
typedef struct s_mitem {

MENU_TAG tag;
char *text;
short mkey;
unsigned enabled:1;
unsigned checked:1;
unsigned checkable:1;
unsigned separator:1;
struct s_mitem *child;

/* non-portable fields */
...

} MENU_ITEM;

When you create MENU_ITEM-based menu definitions, remember
that each MENU_ITEM structure represents a single menu item
9-5

(either in the menubar, or in one of the pull-down or pop-up menus).

An array of MENU_ITEMS represents each menubar and each pull-
down menu. These arrays are terminated by an extra MENU_ITEM
structure at the end of the array whose tag field is set to zero.
Also, if a MENU_ITEM structure tag refers to a subsidiary menu,
then the child field points to the first element of the subsidiary menu’s
MENU_ITEM array.

The tag field of the MENU_ITEM structure contains the unsigned
integer ID number that you can use in your application program
to refer to that menu item.

Tip: To allocate in-memory menu definitions:
Call xvt_mem_alloc.

Tip: To recursively free an in-memory menu definition:

Call xvt_res_free_menu_tree.

XVT Portability Toolkit Guide

9-6

Of course, you shouldn’t call xvt_res_free_menu_tree on any statically
allocated data.

See Also: For more information on menu tags, see MENU_TAG in the
XVT Portability Toolkit Reference. For a complete description of the
rest of the fields in the MENU_ITEM structure, also see MENU_ITEM.

Converting XRC Menu Definitions to MENU_ITEM Definitions

You can automatically convert an XRC-based menu definition to an
in-memory, MENU_ITEM-based definition. This allows you to define
all of your menus in XRC, then read them into your program as
in-memory structures to be used with functions that take a
MENU_ITEM argument, such as xvt_win_create_def and xvt_menu_set_tree.

Tip: To convert an XRC-based menu definition:
Call xvt_res_get_menu.

Tip: To free in-memory structures when you’re done with them:
Call xvt_res_free_menu_tree.

9.4. Managing Menus and Menu Attributes
This section discusses functions that manipulate menus as well as
the various menu attributes. Most of these functions refer to menus
by the window that owns them, and reference the individual menu
items by their tags.
9.4.1. Creating a Menu Hierarchy without Resources
If you do not have a menu in a resource description and need to
create it from scratch, construct a MENU_ITEM tree yourself by
either statically or dynamically creating it, then properly linking
MENU_ITEM arrays in your code.

Tip: Remember that each MENU_ITEM array must end with an extra item
with the tag field set to zero.

9.4.2. Modifying Menus
Tip: To modify an existing menu:

1. Call xvt_menu_get_tree.
This function retrieves a window’s menu and places it into
in-memory MENU_ITEM data structures.

Menus

2. Change the data structure contents.

3. Call xvt_menu_set_tree to replace a window’s menu with
the modified menu.

9.4.3. Menu Item Strings and Menu Mnemonics
Tip: To change the text of a menu item during program execution:

Call xvt_menu_set_item_title.

The text for a menu item can contain a tilde (~) character to designate
the mnemonic character of the menu item. The tilde character should
immediately precede the character used for the mnemonic in the text
string in a call to xvt_menu_set_item_title. When the menu item is
displayed, the mnemonic character is automatically enabled and
shown to the user as an underlined character.

Implementation Note: On the Macintosh platform, which does not support mnemonic
characters, XVT/Mac removes the tilde character before displaying
the menu item (without any underlining) and saves it for retrieval.

9.4.4. Checking Menu Items
When you define individual menu items (either in XRC or as
MENU_ITEM structures), you can specify whether the item is
checkable and, if so, whether it is checked.
9-7

Tip: To check/uncheck menu items to reflect their current state:

Call xvt_menu_set_item_checked.

Since pop-up menus only exist within the context of the function
xvt_menu_popup, no other menu functions can affect them. If
you want to have a pop-up menu item checked as a default initial
selection, you need to mark it checked in the MENU_ITEM tree.

Note: When the user selects a checkable menu item, XVT does not
automatically check it. An E_COMMAND event notifies you of the
selection, and you then need to check the menu item by using
xvt_menu_set_item_checked.

XVT Portability Toolkit Guide

9-8

9.4.5. Enabled or Disabled Menu Items
Menu items can be shown as either enabled or disabled. You
specify the initial state when defining the menu in XRC.

Tip: To enable/disable individual items and subsidiary menus:

Call xvt_menu_set_item_enabled.

Note: You cannot enable or disable individual items on the Font/Style
menu. To set check marks that correspond to an application font_id,
use xvt_menu_set_font_sel. You can enable or disable the entire Font/
Style menu with xvt_menu_set_item_enabled by specifying the tag
FONT_MENU_TAG.

9.4.6. Separators
You can define the separator menu item only when you create a menu.
The separator appears as a platform-specific decoration in drop-
down menus. The menu item is not selectable and no other attributes
or functions can apply to it.

9.5. Pop-up Menus
A pop-up menu is a temporary menu displayed at a specified
location over a window (only windows that can receive mouse
events may be specified). Pop-up menus are created from a
MENU_ITEM tree.

Generally, applications should invoke a pop-up menu only in

response to an E_MOUSE_DOWN event. When a user selects a menu
item, an E_COMMAND event is sent to the specified window’s event
handler. This event should be processed just like the E_COMMAND
event generated from a menubar menu item. In the case of pop-up
menus, a child window (W_PLAIN or W_NO_BORDER) may receive
E_COMMAND events.

Tip: To display a pop-up menu:

Call xvt_menu_popup.

Menus

The following enumeration type is used to position a pop-up menu
with respect to a given window’s coordinate system:

typedef enum e_xvt_alignment {
XVT_POPUP_CENTER, /* Centered below specified

position */
XVT_POPUP_LEFT_ALIGN /* Left-aligned below

specified position */
XVT_POPUP_RIGHT_ALIGN /* Right-aligned below

specified position */
XVT_POPUP_OVER_ITEM /* Centered with respect to

a specific menu item */
} XVT_POPUP_ALIGNMENT;

Implementation Note: On XVT/Win32, and XVT/Mac, xvt_menu_popup returns only after
the user has selected a menu item or has dismissed the pop-up menu
without making a selection. On XVT/Win32, the event is posted to
the native queue. On XVT/Mac, E_COMMAND events are sent prior
to xvt_menu_popup returning and only if the user makes a selection. On
XVT/XM, xvt_menu_popup returns immediately after being called.
E_COMMAND events are sent some time after xvt_menu_popup returns
and only if the user selects a menu item. As you write your
application, consider these differences in event delivery time.

Example: This example demonstrates how to create different pop-up menus
when a user clicks on different regions of a window:

long XVT_CALLCONV1 win_eh(WINDOW win, EVENT *ep)
{

static MENU_ITEM *popup_menus;
PNT pnt;
...
switch (ep->type) {
9-9

...
case E_CREATE:
/* obtain array of popup menus from resources */

popup_menus = xvt_res_get_menu (POPUP_MENUS);
...
break;

 case E_MOUSE_DOWN:
pnt = event->v.mouse.where;

if (pnt.h > 100 && pnt.h < 150 &&
pnt.v > 100 && pnt.v < 150)

xvt_popup_menu(popup_menus[0]->child, win,
pnt, XVT_POPUP_LEFT_ALIGNED, 0);

else if (pnt.h > 150 && pnt.h < 200 &&
pnt.v > 150 && pnt.v < 200)

xvt_popup_menu (popup_menus[1]->child, win,
pnt, XVT_POPUP_CENTERED, 0);

else
/* position menu, centering over menu item

with USER_ITEM_TAG id */
xvt_popup_menu (popup_menus[2]->child, win,

pnt, XVT_POPUP_OVER_ITEM,
USER_ITEM_TAG);

break;
...

}
}

XVT Portability Toolkit Guide

9-10

Coordinate Systems

10
COORDINATE SYSTEMS

XVT always expresses coordinates in pixels. “Pixel” is a shorthand
term for “picture elements.” Pixels are the individual dots making up
the image on a screen or printer.

The point (0, 0) is at the upper-left corner, and the positive directions
are to the right and down. This is true no matter what the underlying
window system uses for its origin; if necessary, XVT translates.

This chapter discusses the following topics that relate to coordinate
systems:

• How coordinates are defined relative to containers
(SCREEN_WIN and TASK_WIN)

• Where the client (drawing) area of a window is located

10.1.
10-1

• How text is drawn relative to coordinates
• How to use points (PNTs) and rectangles (RCTs) as

coordinates
• How to get information about display and system metrics

SCREEN_WIN and TASK_WIN
XVT defines all coordinates relative to their container’s coordinate
system. The SCREEN_WIN is at the top of the XVT window/dialog
hierarchy; it constitutes the coordinate system of the physical screen.
TASK_WIN is then defined relative to SCREEN_WIN.

XVT dialogs are defined relative to SCREEN_WIN; top-level windows
are defined relative to TASK_WIN. Child windows and controls are
defined relative to their parent window (a dialog, a top-level
window, or another child window).

XVT Portability Toolkit Guide

10-2

SCREEN_WIN and TASK_WIN relate in varying ways, depending on
the platform:

• XVT/XM — TASK_WIN is the same as SCREEN_WIN

• XVT/Win32 — TASK_WIN is a physical window that is
defined relative to its SCREEN_WIN container

• XVT/Mac — SCREEN_WIN and TASK_WIN have the same
origin, but this origin starts just below the fixed menubar

The differences in screen and task windows between the various
XVT-supported platforms are shown in Figure 10.1.

origin for
SCREEN_WIN

origin for
TASK_WIN

task window
physical screens

origin for
SCREEN_WIN
and TASK_WIN

XVT/Win32 XVT/XM

XVT/Mac
Figure 10.1. SCREEN_WIN and TASK_WIN relationships and
origins on different supported platforms

fixed
menubar

physical screens

origin for
SCREEN_WIN
and TASK_WIN

Coordinate Systems

It’s sometimes necessary to translate a point or group of points from
the coordinate system of one WINDOW to that of another. You can
convert points among SCREEN_WIN, TASK_WIN, windows, dialogs,
and controls.

Tip: To convert points across coordinate systems:
Call xvt_vobj_translate_points.

10.2. Client Area Location
The client area of a window is the part of the window in which you
can draw. The client area starts just inside the window frame. The
pixel located at (0,0) is the highest and farthest left point that you
can draw on (in other words, it is the location of the upper-left-most
pixel that can be turned on or off). The location of the (0,0)
coordinate is shown in Figure 10.2.
10-3

Figure 10.2. Enlarged view of the upper-left corner of a window’s
client area

See Also: For more information about windows, see Chapter 6, Windows.
For more information about drawing in the client areas of windows,
see Chapter 11, Drawing and Pictures.

pixel at (0, 0)

XVT Portability Toolkit Guide

10-4

10.3. Coordinates for Drawing Text
When you call xvt_dwin_draw_text at a starting point, the text starts at
the x-coordinate and writes on a “baseline” located at the
y-coordinate. Letters with descenders dip below the baseline.

Figure 10.3. Text drawn at (100, 75)

Example: When you draw text at the point (100,75), the text begins to the right
of the x-coordinate imaginary line (value 100), and writes above the
y-coordinate imaginary line (value 75). The placement of the letters
in the drawn text is shown in Figure 10.3.

See Also: For more information about drawing text, see Chapter 15, Fonts and
Text.

10.4. Points and Rectangles

pixel (100, 75)
Because points and rectangles are so widely used, XVT defines two
data types for them, PNT for points and RCT for rectangles:

typedef struct { /* mathematical point */
short v; /* vertical (y) coordinate */
short h; /* horizontal (x) coordinate */

} PNT;

typedef struct { /* mathematical rectangle */
short top; /* top coordinate */
short left; /* left coordinate */
short bottom; /* bottom coordinate */
short right; /* right coordinate */

} RCT;

Coordinate Systems

Points and rectangles are simply mathematical entities; they don’t
appear on the screen. You can use them for screen or window-
relative coordinates, and any other purpose for which they’re
convenient. The placement of both a single point and a rectangle (as
they might be drawn by an application) are shown in Figure 10.4.

Figure 10.4. A window’s coordinate system

XVT provides several functions for manipulating PNTs and RCTs.

Tip: To set the height of a rectangle:
Call xvt_rect_set_height.

Tip: To get the height of a rectangle:
Call xvt_rect_get_height.

90 95 100

30

35

90 95 100

30

35

Pixel with an x-coordinate of 97
and a y-coordinate of 33

Pixels form boundary of
rectangle whose mathematical
boundary extends from
(90, 30) to (98, 34)
10-5

Tip: To set the position of a rectangle:
Call xvt_rect_set_pos.

Tip: To get the position of a rectangle:
Call xvt_rect_get_pos.

Tip: To set the width of a rectangle:
Call xvt_rect_set_width.

Tip: To get the width of a rectangle:
Call xvt_rect_get_width.

Tip: To determine if a rectangle is empty:
Call xvt_rect_is_empty.

XVT Portability Toolkit Guide

10-6

Tip: To set a rectangle to empty:
Call xvt_rect_set_empty.

Tip: To set a rectangle’s coordinates to specific values:
Call xvt_rect_set.

Tip: To offset a rectangle horizontally and/or vertically:
Call xvt_rect_offset.

Tip: To test whether a point is in a rectangle:
Call xvt_rect_has_point.

Tip: To determine whether two rectangles intersect and, if so, to get the
intersection:

Call xvt_rect_intersect.

Note: A point located exactly on the right or bottom boundary of a
rectangle is not in it, whereas a point located exactly on the left or
upper boundary is in the rectangle.

See Also: For more information about rectangle fills, see section 11.1.3.1 on
page 11-13.
For more information on the xvt_rect_* functions, see the XVT
Portability Toolkit Reference.

Coordinate Systems

10.5. Display and System Metrics
When your application draws in a window, you can’t assume
anything about the size of the screen, nor can you assume that pixels
are square. For instance, a rectangle 100 pixels wide and 100 pixels
high may not look like a square to the user. Also, the actual thickness
of a two-pixel-wide line depends on the number of pixels per inch of
the device on which the line is drawn.

Tip: It is possible for you to draw in a logical coordinate system of your
own design that’s appropriate for your application. Then, when you
output to a specific window, translate those coordinates to pixels.

To help, XVT provides the following system attributes that give
some information about the display.

Display Metrics Attributes: Description:

ATTR_SCREEN_HEIGHT Height of screen
ATTR_SCREEN_WIDTH Width of screen
ATTR_SCREEN_HRES Horizontal resolution of screen

in dpi
ATTR_SCREEN_VRES Vertical resolution of screen

in dpi
ATTR_PRINTER_HEIGHT Height of printer page

(for default printer)
ATTR_PRINTER_WIDTH Width of printer page
10-7

(for default printer)
ATTR_PRINTER_HRES Horizontal resolution of printer

in dpi (for default printer)
ATTR_PRINTER_VRES Vertical resolution of printer in

dpi (for default printer)
ATTR_DOC_STAGGER_HORZ Recommended horizontal

document stagger
ATTR_DOC_STAGGER_VERT Recommended vertical

document stagger

You can use these attributes with xvt_vobj_get_attr to obtain the
corresponding value.

See Also: For more information, see the “Attributes” portion of the
XVT Portability Toolkit Reference.

XVT Portability Toolkit Guide

10-8

Drawing and Pictures

11
DRAWING AND PICTURES

Drawing refers to graphical operations performed in a window.
Pictures are collections of drawing functions.

XVT provides a set of portable graphics drawing primitives and
graphical attributes (or drawing tools) to allow applications to
output graphics in windows. XVT supports the following graphics
primitives: line, circle/oval, polyline (multiple-segmented line), arc,
polygon, pie segment, rectangle, font-based text, icon, arrow head,
and rounded rectangle.

XVT PICTUREs

XVT provides an abstraction called a PICTURE for capturing
graphics drawn into a window, for passing them to other
11-1

applications via the clipboard, for archival, or for later redisplay.
Essentially, PICTUREs are one of the set of XVT graphics primitives,
but they are more powerful.

These encapsulated PICTUREs can be saved and/or retrieved from
files, scaled, and drawn into windows with just one function call.
Even though their physical representation differs on each platform,
their logical and programmatic representation is the same; thus, their
use within an XVT application is portable.

See Also: For more information about PICTUREs, see section 11.2 on page
11-16.

XVT Portability Toolkit Guide

11-2

Portable Images

XVT also provides a portable images feature, which manipulates,
displays, and prints bitmapped graphic images (XVT_IMAGEs and
XVT_PIXMAPs). You can use portable images in many ways, for
example as graphics within windows, as labels for Toggle/Picture
Buttons (a type of XVT Custom Component), or as icons on a
Toolbar (another XVT Custom Component).

See Also: For more information about portable images, see Chapter 12,
Portable Images.

11.1. Drawing
In XVT, all graphical operations are window-specific. XVT
graphical operations include the drawing of graphics or text, and
the specification of graphical or textual attributes. Each window
maintains its own set of graphical attributes (color, pens, brushes,
font, etc.).

Note: You cannot draw to dialogs or controls, however, you can draw to
modal windows.

11.1.1. Color
You can specify colors for the outlines of shapes, for their interiors,
and for text. This section focuses on the concept of color.

The next section, section 11.1.2 on page 11-4, gives details about

how you can set the color of four things in XVT: the pen, the brush,
the foreground (used for text and icons), and the background (used
for the spaces between the hatch marks of brushes and the characters
in text).

The RGB Model

XVT uses a 24-bit number to specify a color. The 24 bits are divided
into three 8-bit values for the red, green, and blue components. This
color model is referred to as the RGB model

For each component, a value of 0 means no color and a value of 255
means the maximum color. So, pure white would be 0xFFFFFF, pure
black would be 0x000000, pure red would be 0xFF0000, and so on.
Equal values for the three components produce shades of gray; a
medium gray would be 0x808080. (From this perspective, pure white
is the lightest shade of gray and pure black is the darkest shade of
gray.)

Drawing and Pictures

Predefined Colors

For your convenience, XVT provides symbols for eleven colors:
#define COLOR_RED ...
#define COLOR_GREEN ...
#define COLOR_BLUE ...
#define COLOR_CYAN ...
#define COLOR_MAGENTA ...
#define COLOR_YELLOW ...
#define COLOR_BLACK ...
#define COLOR_DKGRAY ...
#define COLOR_GRAY ...
#define COLOR_LTGRAY ...
#define COLOR_WHITE ...

You can use other colors if you wish. However, if your target
platform doesn’t flexibly support color, XVT recommends that you
use one of the eleven listed colors.

Using Colors on Monochrome Screens

Regardless of which XVT implementation and target hardware
you’re using, you can always use colors. XVT maps all requested
colors (other than black and white) drawn with a solid pen or brush
pattern to a grayscale pattern.

For monochrome screens, XVT supports a minimum of five levels
of “gray,” corresponding to XVT’s COLOR_WHITE, COLOR_BLACK,
COLOR_LTGRAY, COLOR_GRAY, and COLOR_DKGRAY. XVT
represents shades of gray with intermittent dots or stipple patterns.
11-3

The stipple patterns for light grays can cause some lines (typically
vertical lines) to appear narrower than requested.

Color Guidelines

Since white-on-white and black-on-black makes whatever you’re
drawing invisible, be careful about using more colors than the target
hardware can support. Here are some guidelines:

• If color is optional, but isn’t necessary to convey information,
go ahead and use it freely. Use deep colors on a white
background to prevent a light color from being mapped to
very light gray on a monochrome or grayscale monitor.
Test your application to make sure that everything is visible.

• If color is required, and your application requires at least a
grayscale monitor, stick to the grays to be safe.

• If color is required, make sure your users know this and run
your application on proper equipment.

XVT Portability Toolkit Guide

11-4

• If you must code differently depending on whether color
is available, you can check the color capabilities of your
target hardware by using the ATTR_DISPLAY_TYPE attribute.

See Also: For information about setting color for pens, brushes, foreground,
and background, see section 11.1.2, next.

11.1.1.1. Allowing Users to Choose Colors
Calling xvt_dm_post_color_sel brings up a dialog that allows the user to
select a color. The dialog, shown in Figure 11.1 below returns the
color the user has chosen.
Figure 11.1. The color selection dialog

11.1.2. Drawing Tools
Each XVT window (but not dialog box or control) has a collection
of associated drawing tools. The structure DRAW_CTOOLS records
these tools:

typedef struct s_drawct { /* set of drawing tools */
CPEN pen; /* color pen */
CBRUSH brush; /* color brush */
DRAW_MODE mode; /* drawing mode */
COLOR fore_color; /* foreground color */
COLOR back_color; /* background color */
BOOLEAN opaque_text; /* is text drawn

opaquely? */
} DRAW_CTOOLS;

Drawing and Pictures

The sections that follow discuss each member of this structure and
their types.

11.1.2.1. Pens
A pen draws lines and the outline of closed shapes, while a brush is
used for the interior of closed shapes. Figure 11.1 shows which
shapes have a pen or a brush.

xvt_dwin_draw_line xvt_dwin_draw_aline xvt_dwin_draw_polyline

xvt_dwin_draw_arc xvt_dwin_draw_rect xvt_dwin_draw_roundrect

xvt_dwin_draw_polygon xvt_dwin_draw_oval xvt_dwin_draw_pie

P P P

P P+B P+B
11-5

Figure 11.1. XVT drawing functions that use a pen (P), brush (B), or
neither (N)

Tip: To specify characteristics of a pen:

Use a CPEN structure:
typedef struct s_cpen {

short width; /* width */
PAT_STYLE pat; /* pattern */
PEN_STYLE style; /* style (P_SOLID) */
COLOR color; /* color */

} CPEN;

Text
xvt_dwin_draw_text xvt_dwin_draw_icon

P+B P+B P+B

N N

XVT Portability Toolkit Guide

11-6

The width member specifies the width of the pen stroke in pixels. The
pat member specifies the pen pattern. pat has the following allowable
values:
PAT_SOLID

A normal pen that draws a solid line in the specified width with
the specified color.

PAT_HOLLOW
No pen at all. When this is set, shapes made with a brush (e.g.,
an oval) do not have a border around them, and shapes with only
a pen aren’t seen at all.

PAT_RUBBER
A grayish or dotted line useful when rubberbanding. This is the
technique of allowing the user to stretch a rectangle or other
shape as the mouse is moved (Figure 11.2). Drawing is always
done with a mode of M_XOR.

Figure 11.2. Stretching out a rubberband by dragging the mouse

PAT_STYLE Structure
The following is the PAT_STYLE structure. Values other than the
three listed above can’t be used for pens, but the next section uses
them for brushes. One value, PAT_NONE, is for XVT’s internal use
and should never be used by an application.

typedef enum {
PAT_NONE, /* no pattern */
PAT_HOLLOW, /* hollow */
PAT_SOLID, /* solid fill */
PAT_HORZ, /* horizontal lines */
PAT_VERT, /* vertical lines */
PAT_FDIAG, /* diagonal lines—top-left to

bottom-right */
PAT_BDIAG, /* diagonal lines—top-right to

bottom-left */
PAT_CROSS, /* horizontal and vertical

crossing lines */
PAT_DIAGCROSS, /* diagonal crossing lines */
PAT_RUBBER, /* rubberbanding */
PAT_SPECIAL

} PAT_STYLE;

Drawing and Pictures

Pen Styles

The following enumeration shows the pen styles used in the style
field of the CPEN object. These pen styles are meaningful only when
the pen pattern is PAT_SOLID. On some platforms, the native toolkit
might not support these styles; thus XVT might not support them.

typedef enum e_pen_style { /* pen style */
P_SOLID, /* solid */
P_DOT, /* dotted line */
P_DASH /* dashed line */

} PEN_STYLE;

Finally, the color specifies the RGB color, as explained above.

Tip: To set a window’s pen:
Call xvt_dwin_set_cpen.

Tip: To explicitly assign a value to the current pen:

Call xvt_dwin_set_std_cpen. The choices are:
• TL_PEN_BLACK
• TL_PEN_HOLLOW
• TL_PEN_RUBBER
• TL_PEN_WHITE

Tip: To set the pen (and all of the other drawing tools):
Call xvt_dwin_set_draw_ctools.
11-7

Tip: To find out the current pen:
Call xvt_dwin_get_draw_ctools.

11.1.2.2. Brushes and Background Colors
Tip: To specify characteristics of a brush:

Use a CBRUSH structure:
typedef struct s_cbrush {

PAT_STYLE pat;
COLOR color;

} CBRUSH;

The pat is the pattern; the color is the color of the patterns ink. Figure
11.3 shows the patterned PAT_STYLEs that you can use for brushes
(see the previous section for the PAT_STYLE structure).

XVT Portability Toolkit Guide

11-8

Figure 11.3. XVT’s predefined CBRUSH patterns

The hatches drawn by a brush are always in the brush color
(member color of the current CBRUSH); the spaces between the
hatches are drawn in the current background color (Figure 11.4).
The background color is not part of a CBRUSH, but is set separately
with xvt_dwin_set_back_color (or xvt_dwin_set_draw_ctools).
To draw with a solid color, set the pattern to PAT_SOLID and the color
to whatever RGB value you want.

PAT_SOLID PAT_HORZ PAT_VERT

PAT_FDIAG PAT_BDIAG PAT_CROSS PAT_DIAGCROSS
Figure 11.4. A hatched brush (PAT_VERT, here) uses the brush
color for the hatching and the background color for the
open spaces and opaque text. The ink color for text is
determined by the foreground color.

Hello
foreground color
xvt_dwin_set_fore_color

background color
xvt_dwin_set_backcolor

brush color
xvt_dwin_set_cbrush

Drawing and Pictures

Tip: To set the current brush for a window:
Call xvt_dwin_set_cbrush.

Tip: To set the brush (and all of the other drawing tools):
Call xvt_dwin_set_draw_ctools.

Tip: To find out the current brush:
Call xvt_dwin_get_draw_ctools.

Tip: To set a window’s brush to a standard value:

Call xvt_dwin_set_std_cbrush. The choices are:
• TL_BRUSH_BLACK
• TL_BRUSH_WHITE

11.1.2.3. Foreground Colors—Opaque and Transparent Text
Tip: To set the color for text:

Call xvt_dwin_set_fore_color.

This function affects only the ink; the spaces between the letters are
either not drawn (whatever was already there shows through), or are
drawn opaquely with the current background color.

Tip: To determine whether text is drawn with an opaque background:
11-9

Set the opaque_text member of a DRAW_CTOOLS structure and call
xvt_dwin_set_draw_ctools.

Note: There is no function for setting only the opacity of the background
for text.

On certain platforms, the foreground and background colors are also
used when drawing icons (with xvt_dwin_draw_icon). For others, icons
are always drawn in black and white. The only way to guarantee that
icons are portably drawn in certain colors is to specify a black
foreground and a white background, which is the XVT default when
a new window is created.

XVT Portability Toolkit Guide

11-10

11.1.2.4. Drawing Mode
Tip: To set the current draw mode:

Call xvt_dwin_set_draw_mode or xvt_dwin_set_draw_ctools.

The mode member of the DRAW_CTOOLS structure determines how
pixels to be drawn are combined with pixels already on the screen.
These modes are allowed:

typedef enum {
M_COPY,
M_OR,
M_XOR,
M_CLEAR,
M_NOT_COPY,
M_NOT_OR,
M_NOT_XOR,
M_NOT_CLEAR

} DRAW_MODE;

The common modes are M_COPY (the default), and M_XOR. The six
other drawing modes are used only in painting programs.

M_COPY

M_COPY ignores what’s on the screen and copies drawn pixels. Use
M_COPY for printing, as some print drivers can’t handle any other
method of transferring pixels to paper.

M_XOR

The purpose of M_XOR is to temporarily show something on the

screen. It does this by toggling what’s drawn on the screen, such that
a second identical drawing operation restores what was present
before the first drawing. This is important because you may not
know (or care) what was there before, and because it’s difficult to
update the screen with the old contents rapidly enough to keep up
with a moving mouse.

M_XOR combines new and old pixels so that these rules are obeyed:
• Drawing the same shape twice with an M_XOR mode is

guaranteed to leave the screen as it was
• Drawing a shape once with an M_XOR mode allows you to see

the shape if at all possible

All XVT implementations obey the first rule at all times. The second
rule is always obeyed when you are drawing in black and white, but
can be violated if your current color palette is loaded with very
unfavorable colors.

Drawing and Pictures

Figure 11.2 on page 11-6 shows rubberbanding with an M_XOR
mode. To see an example of a C function that draws a rubberband
rectangle using M_XOR mode, refer to page 4-52.

See Also: Another common example of rubberbanding is selecting text. For
more information about selecting text, see section 15.8.2 in Chapter
15, “Fonts and Text.”

11.1.2.5. Manipulating Drawing Tools
Before drawing anything in a window, make sure that the window
has the correct drawing tool settings by calling xvt_dwin_set_cpen,
xvt_dwin_set_cbrush, xvt_dwin_set_draw_mode, and xvt_dwin_set_font as
necessary. You can also set all the tools at once with a call to
xvt_dwin_set_draw_ctools. You normally call these functions only to
change a tool, since settings are saved.

Tip: To make a temporary change without affecting the current setting:
Bracket your tool changes and associated drawing
with calls to xvt_dwin_get_draw_ctools and
xvt_dwin_set_draw_ctools.

Tip: To get a set of normal tools:
Call xvt_app_get_default_ctools and use the
result in a call to xvt_dwin_set_draw_ctools.
11-11

The normal tools are also the default tools for a newly created
window:

• A one pixel wide, solid, black pen (TL_PEN_BLACK)
• A solid, white brush (TL_BRUSH_WHITE)
• Foreground and background colors of black and white,

respectively
• A font considered to be a “system font” (this is usually a

proportionally spaced font about 10 points in size)
• An M_COPY drawing mode
• A transparent text background (the opaque_text member

of the DRAW_CTOOLS structure set to FALSE)

In addition to ensuring that the current window is specified and
that the tools in that window are set, you should also ensure that
the clipping rectangle is set. Clipping is not recorded in the
DRAW_CTOOLS structure, so merely setting the tools won’t affect
the clipping.

XVT Portability Toolkit Guide

11-12

Tip: To turn off clipping, use this function call:
xvt_dwin_set_clip(win, NULL);

11.1.2.6. Allowing Users to Change Drawing Tools
XVT also has the ability to let the user choose the different
components of the DRAW_CTOOLS structure. The dialog shown in
Figure 11.5 below has four tabs, and any or all of these tabs may be
presented to the user by choosing various combinations of the
XVT_CTOOLS* constants.

See Also: For more information on the DRAW_CTOOLS struct and the
xvt_dm_post_ctools_sel dialog, see the XVT Portability Toolkit
Reference.
Figure 11.5. The drawing tools selection dialog

11.1.3. Graphic Shapes, Text, and Pictures
Tip: To draw shapes:

Use one of the following functions:
xvt_dwin_draw_aline
xvt_dwin_draw_arc

Drawing and Pictures

xvt_dwin_draw_image
xvt_dwin_draw_line (along with xvt_dwin_draw_set_pos)
xvt_dwin_draw_oval
xvt_dwin_draw_pie
xvt_dwin_draw_pmap
xvt_dwin_draw_polygon
xvt_dwin_draw_polyline
xvt_dwin_draw_roundrect.

See Also: For information about drawing portable images and pixmaps, see
Chapter 12, Portable Images.

Tip: To draw text:

Call xvt_dwin_draw_text.

You must specify the starting x- and y-coordinates (relative to the
client area of the window) and the text itself. The y-coordinate is that
of the baseline, so in general the text extends above it and below it.

Tip: To draw an encapsulated picture:

Call xvt_dwin_draw_pict.

None of the XVT color-setting functions affects the result of
xvt_dwin_draw_pict. However, you can capture color drawing in the
picture when it is created.

All drawing is expressed in pixel coordinates, which vary according
to the device. In particular, the screen and the printer use different
11-13

coordinate systems.

See Also: For more information about encapsulated pictures, see section 11.2
on page 11-16.
For more information about coordinate systems, see Chapter 10,
Coordinate Systems.

11.1.3.1. Rectangle Fills
XVT uses an “exclusive model” to fill all rectangle-based areas.
This applies to client and outer rectangles for windows, pixmaps,
pictures, and images, as well as for clip rectangles, fills for drawn
rectangles, oval arcs, and pie shapes. It also applies to rectangles for
xvt_dwin_scroll_rect.

Under the exclusive model, the point specifying the rectangle’s
bottom-right corner lies outside the rectangle. The point specifying
the rectangle’s upper-left corner lies inside the rectangle, as shown
in Figure 11.6.

XVT Portability Toolkit Guide

11-14

The pixel size of a rectangle is computed like this:
width = rct.right - rct.left;

height = rct.bottom - rct.top;

Figure 11.6. Exclusive model for rectangle fills

Calling xvt_vobj_get_outer_rect for a window or control returns a
rectangle that would exactly cover the object and its decorations.

Implementation Note: Decorations and decoration sizes for controls, such as default button
outlines or focus indicators, vary between platforms.

x0 x1

y0

y1
pixel (x1, y1)

pixel (x0, y0)
Note: A rectangle with a width or height of zero is illegal for
xvt_dwin_draw_* functions.

11.1.3.2. Rectangle Outlines
The line outlining a rectangle centers around the perimeter of the
“exclusive” fill rectangle. This applies to rectangles, round
rectangles, ovals, arcs, and pie shapes. This means that a single
pixel-width outline goes through the points (rct.left, rct.top) and
(rct.right-1, rct.bottom-1).

Outlining lines with a width greater than one pixel center on this
perimeter. Lines with an even width cannot be centered; the extra
pixel width falls to the bottom and right of the perimeter. (This is
called “southeast gravity.”)

Drawing and Pictures

11.1.3.3. Lines, Polylines, and Polygons
Lines, polylines, and polygons connect specified points. This differs
from rectangle specifications as discussed in the previous section.
Recall that for rectangles, the exclusive model specifies that the
bottom-right point lies outside the drawn shape.

Tip: To exactly overlay a rectangle on a line-based drawing:
Increase the rectangle’s bottom-right point coordinates by one
in each direction.

Zero-pen-width lines
XVT interprets lines of zero pen width as thin lines. These lines
draw using the hardware acceleration available on the native
platform, which may not follow the rules for lines of width
equal to one.

Wide lines
A wide line centers on the thin line connecting its specified
points. Lines with an even width cannot be centered; the extra
pixel width falls to the bottom and right of the perimeter.

 PAT_HOLLOW lines
XVT ignores the line width for lines with style PAT_HOLLOW.
For filled shapes such as rectangles and polygons, the outline
becomes a part of the fill; the brush color and pattern apply to
them. The effect is the same as interpreting PAT_HOLLOW as
zero line width.
11-15

Implementation Note: Some platforms may deviate from the PAT_HOLLOW rule just
mentioned, in the case of polygon fills using a brush pattern other
than PAT_SOLID. If your application requires exact brush fills, use
rectangular shapes.

11.1.3.4. Line Caps and Joints
XVT’s drawing model assumes a round pen of a prescribed width.
This round pen approximation is not exact. For example, the
Macintosh drawing model uses a rectangular pen; in this case
emulating the round pen would yield unacceptable drawing
performance.
Line caps

The terminations at the end of lines. Following the round pen
model, the line caps are round. Line caps are centered around
the line’s end points. This implies that a line specified by an
identical point for both end points will be represented by a circle
centered at the point.

XVT Portability Toolkit Guide

11-16

Figure 11.7. The round pen model, showing rounded line caps for a
line (of width 5) drawn from x0,y0 to x1,y0

Line joints
The connections between line segments. The line joints for lines
with width greater than one use the closest approximation of the
round pen model on each platform. This may be a round,
mitered, or other platform-specific rendering model.
Applications sensitive to exact thick line joint rendering, or
applications requiring straight line caps, should use filled

1

x0 x1

y0

pixel (x1, y0)pixel (x0, y0)
shapes such as rectangles or arcs instead of wide lines.

1.2. Pictures
XVT provides an abstraction called a picture, which combines a
sequence of drawing operations—tool changes, shapes, and text—
into a standard encapsulated form that other, non-XVT applications
can interpret.

With a picture, you can capture graphics drawn into a window, then
pass them to other applications via the clipboard, archive them, or
redisplay them. You can also bring encapsulated pictures into an
XVT application. Once a picture is encapsulated, you can’t operate
on its individual components, but you can scale it by changing the
size of its framing rectangle.

Essentially, pictures are one of the set of XVT graphics primitives,
but they are more powerful. With just one function call, you can save

Drawing and Pictures

and/or retrieved encapsulated pictures from files, scale them, and
draw them into windows. Even though their physical representation
differs on each platform, their logical and programmatic
representation is the same; thus, you can use them portably within
any XVT-based application.

An encapsulated picture is referred to by a 32-bit descriptor of type
PICTURE, the internals of which are hidden from XVT applications:

typedef long PICTURE;

Tip: Design your XVT application to be insensitive to the exact form of
encapsulated pictures. The representations that XVT uses were
chosen because they are used by most painting programs. However,
they could change in future releases.

See Also: For more information, see the “PICTURE” data type in the
XVT Portability Toolkit Reference.

11.2.1. Creating and Accessing Pictures
Tip: To create a picture:

1. Call xvt_dwin_open_pict with a frame rectangle, relative to the
current window, that delimits the part to be encapsulated.

2. Draw in the current window. Instead of showing up on the
screen, your actions are recorded.

3. To return the PICTURE object when you’re done, call
11-17

xvt_dwin_close_pict.

Tip: To release storage when you no longer need a picture:
Call xvt_pict_destroy.

Tip: To draw a PICTURE in the current window:

Call xvt_dwin_draw_pict.

XVT stretches or shrinks the picture to fit the new frame rectangle
you supply.

Tip: To put a PICTURE onto the clipboard:
Call xvt_cb_put_data.

XVT Portability Toolkit Guide

11-18

11.2.2. Saving and Retrieving Pictures From Files
If you want to save a PICTURE to a file, you must flatten it into a
sequence of bytes.

Tip: To save a picture to a file:

1. Call xvt_pict_lock, which returns a character pointer and the
number of bytes it points to.

2. Write the data byte-by-byte with a call to the standard C
functions fwrite or write.

3. When you’re done with the pointer, call xvt_pict_unlock.

When you read in sequential bytes that were originally accessed
via xvt_pict_lock (with fread or read), you can reconstruct a
PICTURE by calling xvt_pict_create. It returns the frame rectangle to you
so you can use it in a call to xvt_dwin_draw_pict.

Tip: To transform a flattened clipboard picture to a real picture:

1. Call xvt_cb_get_data to get a flattened PICTURE from the clipboard.

2. Call xvt_pict_create to transform it into a genuine PICTURE.

Implementation Note: On XVT/Mac, a PICTURE is a PICT (which is general enough to
include bitmaps). On XVT/Win32, it’s a bitmap. However, don’t
write your applications to assume that these are the formats, since
the bitmap representations are likely to change with future XVT
releases.

Portable Images

12
PORTABLE IMAGES

XVT’s portable images feature lets your application manipulate,
display, and print bitmapped graphic images—in several different
file formats—on all XVT Portability Toolkit platforms. You can
create images on the platform(s) of your choice and easily move
them to other platforms.

The portable images feature includes these key elements:
• You can use three different color formats: monochrome,

8-bit indexed color, and 24-bit RGB color
• Color formats are independent of display hardware, so your

application can manipulate images internally without
hardware restrictions
12-1

• XVT provides file I/O functions for several different image
file formats, including Win32 BMP,
X Window System xpm and xbm, and Macintosh PICT

• You can copy rectangular regions from one image to another
• You can scale, translate, and stretch rectangular regions
• Color palettes and color mapping let your application display

images on devices with limited color capabilities

Because the native graphics systems of the XVT-supported
platforms use different standard formats, XVT has established
the Win32 BMP format as the portable image file format
for all XVT products. The XVT Portability Toolkit can display
Win32 BMP images on any supported platform, automatically
making any necessary conversions.

XVT Portability Toolkit Guide

12-2

Using Portable Images

You can use portable images in many ways:
• As graphics within windows in your application
• As labels for Toggle/Picture Buttons (a type of

 XVT Custom Control)
• As icons on a toolbar or palette (by labeling

Toggle/Picture Buttons within a Toolbar, which is
another XVT Custom Control)

To obtain an image that is portable to all platforms, you create
the image only once on any of the supported platforms.

12.1. Image Terminology
This section defines three important terms that appear throughout
this chapter: pixel, image, and pixmap.

Pixel

A pixel (from “picture element”) is a single dot in a graphic image.
In black-and-white images, pixels can be represented by single bits.
In color images, pixels are represented by two or more bits.

Image

An image is a rectangular array of pixels that exists in memory
addressable by your application. Images are independent of output

devices (CRT displays or printers), and hence are not drawn directly
on the screen. You cannot use XVT drawing commands to draw into
an image. However, your application can directly manipulate the
pixels of an image.

Pixmap

A pixmap is a device-dependent array of pixels that can be displayed
in a window. You can use XVT drawing commands to draw into
pixmaps. However, your application cannot directly modify the
pixels of a pixmap.

Portable Images

12.2. Color
All XVT graphics, image, and pixmap operations use a red-green-
blue (RGB) color model. The COLOR data type provides eight-bit
level resolution for each color component.

Images and pixmaps use one of three color formats:
• Monochrome format
• Indexed format
• True color format

The formats differ in the number of colors displayable and in
the amount of memory used by one pixel. The following table
summarizes the three formats:

Format: Displayable Colors: Memory per Pixel:

Monochrome Two (black and white) One bit
Indexed Up to 256 One byte
True Color Up to 16 million One COLOR value

 (32 bits; eight are not
 currently used)

12.2.1. Color Look-Up Tables
12-3

The indexed color mode uses a color look-up table (or “CLUT”).
Each pixel uses one byte as an index into the look-up table. A CLUT
contains up to 256 COLOR entries. As a result, an image or pixmap
that uses indexed color can contain up to 256 different colors
simultaneously.

See Also: For more information about CLUTs, see section 12.5.1.4 on page
12-7.

12.2.2. Color Mapping
If a region is transferred between images or pixmaps with different
color formats, some colors in the region may be changed, or
mapped, to different colors. Since different image color formats can
represent different numbers of colors, colors in the source image or
pixmap must be mapped onto colors in the destination.

When the destination uses true color, the mapping is trivial and no
colors are changed, since any color in the source can be represented
in the destination. In all other cases, the mapping operation finds the

XVT Portability Toolkit Guide

12-4

closest-matching color in the destination for each color in the source.
The “closest” color is found by minimizing the sum of the
differences between the red, green, and blue components of the
source and destination colors.

Color mapping is performed either by the XVT image- and pixmap-
transfer functions, or by the underlying window system. Your
application has no direct control over how colors are mapped.
However, when an indexed color image is the destination, your
application can choose the colors in the destination image by
filling its color look-up table before transferring the region.

See Also: For more information about color, see Chapter 11, Drawing and
Pictures.

12.3. Palettes
While the XVT Portability Toolkit provides three different color
formats, not all XVT platforms include hardware capable of
supporting all three modes. To accommodate hardware with
different color formats (for instance, 16-color or gray-scale
displays), XVT uses palettes to translate image and pixmap
colors into colors displayable by the physical device.

Palettes let your application display color images on devices with
less than full-color features. When displaying an image in a window,
the colors in the image are mapped to the closest-matching available
colors in the window’s palette. Your application can construct its
own palettes to optimize the appearance of its images on different

display devices.

Note: XVT ignores color palettes for any display supporting more than
256 colors. As this may change in future XVT releases, use the
default palette for systems with more than 256 colors.

Portable Images

12.4. Portable File I/O
Your applications can use images created on different GUI
environments because XVT Portability Toolkit functions can read
several different image file formats. XVT supports the following
formats:

• MS-Windows and OS/2 BMP
• Macintosh PICT
• X Window System xpm (level 3 only)
• X Window System xbm

Your application does not have to provide special code for each
image format. When the files are read, they are converted (in
memory) into an XVT image. XVT’s stored images are compatible
with the MS-Windows BMP format.

Note: Reading and writing of Macintosh PICT formats is supported on
the Macintosh only. For X, level 1 and 2 pixmaps are not supported.
Other formats are supported across all XVT platforms.

12.5. Working with Portable Images

12.5.1. Images
Memory-based images are central to the XVT Portability Toolkit’s
12-5

portable image feature. Images translate between different file
formats and different display hardware. Images can be drawn into
pixmaps, windows, and printers.

12.5.1.1. Image Data Types
The XVT Portability Toolkit defines one data type for handling
images and an enumerated type for describing their color formats.

XVT_IMAGE

An object of type XVT_IMAGE represents an image. Because
XVT_IMAGE is an opaque data type, your application cannot access
its internals directly. Instead, you must use XVT functions to access
and modify images.

XVT Portability Toolkit Guide

12-6

XVT_IMAGE_FORMAT

The XVT_IMAGE_FORMAT enumerated type defines three values for
the color formats available for images:

XVT_IMAGE_* values: Format:

XVT_IMAGE_NONE None
XVT_IMAGE_CL8 Indexed color
XVT_IMAGE_RGB True color
XVT_IMAGE_MONO Monochrome

12.5.1.2. Creating and Destroying Images
Tip: To create a new image:

Call xvt_image_create.
-OR-
Call xvt_image_read_*.

With xvt_image_create, you must specify the image’s color format,
width, and height (in pixels). The contents of the image
are not initialized.

Tip: To fill the image with a solid color:
Call xvt_image_fill_rect.

Tip: To remove an image from memory when your application no longer
needs it:
Call xvt_image_destroy.

Caution: Do not use free or xvt_mem_free to destroy an image.

See Also: For more information about creating images by reading image files,
see section 12.5.5 on page 12-15.

Portable Images

12.5.1.3. Manipulating Images
Images are independent of the window system—they are the same
regardless of which platform your application runs on. Because
images have no direct association with windows, you cannot use
XVT Portability Toolkit drawing functions on images.

However, you can copy some or all of an image to a pixmap, use
drawing tools and functions to draw into the pixmap, then copy the
pixmap back to the image. Or, your application can manipulate
images in several other ways.

Tip: To copy images to and from pixmaps:
Call xvt_dwin_draw_image and xvt_image_get_from_pmap.

Tip: To copy some or all of one image to another image:
Call xvt_image_transfer.

Tip: To change the pixel values directly:
Call xvt_image_get_pixel and xvt_image_set_pixel.

Tip: To retrieve a pointer to a complete horizontal row of pixels:
Call xvt_image_get_scanline.

12.5.1.4. Color Look-up Tables for Indexed-color Images
12-7

The color look-up table contained by images with the
XVT_IMAGE_CL8 color format determines how the following
functions convert pixel values to colors, when operating on these
images:

xvt_dwin_draw_image
xvt_image_get_from_pmap
xvt_image_get_pixel
xvt_image_set_pixel
xvt_image_transfer

A color look-up table can contain fewer than 256 colors. When your
application creates an image, the image’s color table contains two
entries: black and white.

Tip: To query the number of entries in the color look-up table:
Call xvt_image_get_ncolors.

Tip: To set the number of entries in the color look-up table:

Call xvt_image_set_ncolors.

XVT Portability Toolkit Guide

12-8

The number of colors in the look-up table affects how the image’s
colors are mapped when image-transfer operations are executed.

Tip: To retrieve color values from a color look-up table:
Call xvt_image_get_clut.

Tip: To change a color value in a color look-up table:
Call xvt_image_set_clut.

Note: Changing an entry in the color look-up table does not change the
values of the pixels of the image. It only changes how those values
are interpreted by image-transfer and pixel-manipulation functions.

See Also: For more information about color mapping, see section 12.2.2 on
page 12-3.

12.5.1.5. Drawing Images
Tip: To draw an image:

Call xvt_dwin_draw_image.

This function draws images in windows, pixmaps, and print
windows. Colors in the image are mapped to the closest available
colors in the destination window or pixmap. Images can be scaled
while being drawn.

See Also: For more information about scaling images, see section 12.5.4 on
page 12-14.
12.5.2. Pixmaps
Pixmaps are essentially XVT WINDOWs with no visible screen
representation. For most graphics operations, pixmaps are
equivalent to WINDOWs. You can copy pixmaps into images,
windows, and other pixmaps.

12.5.2.1. Pixmap Data Types
An object of type XVT_PIXMAP represents a pixmap. Because
XVT_PIXMAP is an opaque data type, you cannot access its internals
directly. You must use XVT Portability Toolkit functions to access
and modify pixmaps.

Portable Images

12.5.2.2. Creating and Destroying Pixmaps
Tip: To create a new pixmap:

Call xvt_pmap_create.

You must specify the pixmap’s parent window, format (which
currently must be XVT_PIXMAP_DEFAULT), width, and height
(in pixels). The contents of the pixmap are not initialized.

Tip: To initialize a pixmap:
Call xvt_dwin_clear.

Tip: To destroy a pixmap:

Call xvt_pmap_destroy.

Caution: Do not use free or xvt_mem_free to destroy a pixmap.

You should destroy a pixmap (XVT_PIXMAP) when your application
no longer needs it. XVT also destroys pixmaps automatically when
their parent windows are destroyed. Because pixmaps do not have
event handlers, there is no notification that a pixmap is being
destroyed. This has two important implications for pixmaps:

You should free any pixmap application data memory during the
E_DESTROY event of the parent window. (Unlike controls, XVT
destroys child pixmaps after their parent.)

Tip: To get the application data associated with a pixmap:
12-9

Call xvt_vobj_get_data (with a valid XVT_PIXMAP as the argument).

If a copy of the pixmap is required, your application should copy
the pixmap to a portable XVT image (XVT_IMAGE) using
xvt_image_get_from_pmap, or to another XVT pixmap using
xvt_dwin_draw_pmap (where the destination window is a valid
XVT_PIXMAP).

XVT Portability Toolkit Guide

12-10

12.5.2.3. Manipulating Pixmaps
Tip: To use a pixmap as a destination for a drawing function:

Pass the XVT_PIXMAP as the window argument of the function.

Most drawing functions can operate on pixmaps as well as windows.
The following functions accept pixmaps and windows:

xvt_dwin_clear
xvt_dwin_draw_aline
xvt_dwin_draw_arc
xvt_dwin_draw_icon
xvt_dwin_draw_image
xvt_dwin_draw_line
xvt_dwin_draw_oval
xvt_dwin_draw_pic
xvt_dwin_draw_pie
xvt_dwin_draw_pmap
xvt_dwin_draw_polygon
xvt_dwin_draw_polyline
xvt_dwin_draw_rect
xvt_dwin_draw_roundrect
xvt_dwin_draw_set_pos
xvt_dwin_draw_text
xvt_dwin_get_draw_ctools
xvt_dwin_get_font_metrics
xvt_dwin_get_text_width
xvt_dwin_scroll_rect
xvt_dwin_set_back_color
xvt_dwin_set_cbrush
xvt_dwin_set_clip
xvt_dwin_set_cpen
xvt_dwin_set_draw_ctools
xvt_dwin_set_draw_mode

xvt_dwin_set_font
xvt_dwin_set_fore_color
xvt_dwin_set_std_cbrush
xvt_dwin_set_std_cpen
xvt_vobj_get_client_rect
xvt_vobj_get_data
xvt_vobj_get_outer_rect
xvt_vobj_get_parent
xvt_vobj_get_type
xvt_vobj_set_data

Portable Images

12.5.2.4. Drawing Pixmaps
Tip: To draw a pixmap:

Call xvt_dwin_draw_pmap.

This function draws pixmaps in windows or other pixmaps. Because
xvt_dwin_draw_pmap does not perform any color mapping, you should
draw pixmaps only into windows or pixmaps with matching color
palettes. Pixmaps can be scaled while being drawn.

Note: Both images and pixmaps can be drawn in print windows.

See Also: For information about scaling pixmaps, see section 12.5.4 on page
12-14.

12.5.3. Color Palettes
Color palettes let your application map the colors in an image onto
the colors of the display hardware. Without color palettes, all image
colors would be mapped onto the hardware’s default colors, which
would prevent complex images from being rendered correctly.

At runtime, a default color palette is associated with the screen
window. As the application creates windows and pixmaps, their
parent window’s color palette is inherited; that is, the parent’s
palette is shared by the newly created window or pixmap.
(Usually a new window’s parent is the screen or task window.)
Child windows inherit a palette from their parent window. This
12-11

allows your application to manipulate one color palette for a
hierarchy of drawable objects.

Color palettes have no effect on true-color windows and pixmaps.

XVT Portability Toolkit Guide

12-12

12.5.3.1. XVT_PALETTE Data Type
Objects of type XVT_PALETTE represent color palettes. Because
XVT_PALETTE is an opaque data type, your application can access
and modify palettes only by using XVT-provided functions.

Palette Types

XVT provides several defined color palette types, which are
enumerated by XVT_PALETTE_TYPE. Your application cannot
modify palettes of any type except XVT_PALETTE_USER.
XVT_PALETTE_STOCK

Contains platform-specific colors that are intended to be
compatible with the platform’s default color scheme.
XVT uses this palette type for the initial default palette.

XVT_PALETTE_CURRENT
Contains the color values currently used by the system’s display
color palette. This palette type minimizes color flashes and
other undesirable effects produced when switching between
different windows and applications on one display. The number
of colors and their values varies depending on the system’s
current display palette.

XVT_PALETTE_CUBE16
Contains 16 basic color values. It is primarily intended for
systems limited to 16-color displays.

XVT_PALETTE_CUBE256
Contains 256 evenly distributed color values, including 16
shades of grey and a uniform set of color hues and saturations.

Imp
XVT_PALETTE_USER
When created, initially contains enough basic system color
values to ensure that menus and window decorations can be
rendered. There are no more than 32 of these pre-allocated
colors for 256-color systems, and no more than two for 16-color
systems. Your application can freely modify palettes of this
type.

lementation Note: X has a “first come, first served” approach to color. Some X
applications “request” many colors from the current color table,
while other applications use only a small number of colors. Also,
you have no way of knowing how many applications have started
prior to your XVT application, and how many colors they have
collectively requested. Although this behavior interferes with your
ability to create customized color palettes using XVT/XM, it is
normal X behavior, and cannot be avoided. If your application is

Portable Images

using custom color palettes, it should check to see if it actually
received the number of colors it specified in its XVT_PALETTE_USER,
and provide a contingency plan for those times it does not get as
many colors as it requested (e.g., post a “lack of color” message to
the user and then terminate).

12.5.3.2. Creating Color Palettes
Tip: To create a new palette:

Call xvt_palet_create.

A newly created palette is not associated with any window or
pixmap.

Tip: To assign a palette to a window or pixmap:
Call xvt_vobj_set_palet.

Tip: To destroy a palette when you no longer need it:
Call xvt_palet_destroy.

12.5.3.3. Adding Colors to a Palette
Tip: To add specific colors to a palette:

Call xvt_palet_add_colors or xvt_palet_add_colors_from_image.

When you call xvt_palet_add_colors, all windows associated
12-13

with the palette receive an E_UPDATE event to update their contents,
if necessary.

You call xvt_palet_add_colors_from_image when your application needs
to display an image where the actual colors are not known (for
instance, an image generated with a scanner or painting program).
This function adds colors to the palette, based on the color content
of the image, to give the image the best possible screen appearance.

Color Tolerance Attribute

The two xvt_palet_add_colors* functions add colors to palettes
according to a color tolerance attribute. A color is added only if it
differs from all colors currently in the palette by an amount greater
than the palette’s color tolerance. This “difference” between two
colors is defined as the maximum of the differences between their
corresponding red, green, and blue components.

Tip: To set a palette’s color tolerance:
Call xvt_palet_set_tolerance.

XVT Portability Toolkit Guide

12-14

Tip: To retrieve a palette’s color tolerance:
Call xvt_palet_get_tolerance.

12.5.4. Transfer Operations
All pixmap and image transfer functions (xvt_dwin_draw_pmap,
xvt_image_get_from_pmap, xvt_dwin_draw_image, and xvt_image_transfer)
have two parameters of type RCT.
These parameters specify the bounding rectangles of the region
transferred from one image or pixmap to the other. The relative sizes
and locations of these rectangles affect how the region is drawn in
the destination:

• If these rectangles have different locations (relative to their
respective images’ origins) the region is translated
appropriately

• If the rectangles have different sizes, the region is scaled to fit
in the destination rectangle

Note: On X platforms, scaling an image or pixmap in both dimensions
(horizontal and vertical) may take significantly longer than
transferring with no scaling, or with scaling in only one dimension.

Portable Images

12.5.5. File Operations
The XVT Portability Toolkit (PTK) provides portable functions for
reading several different common image file formats. Each of these
functions returns an XVT_IMAGE, which your application can
manipulate and display.

Tip: To read and display images created on different platforms:

Call one of the following functions:

To Read this File Type: Use this Function:

Win32 BMP xvt_image_read_bmp
Macintosh PICT xvt_image_read_macpict
X Window System xbm xvt_image_read_xbm
X Window System xpm xvt_image_read_xpm

Note: Only XVT/Mac can read Macintosh PICT files. On XVT/Mac only,
you can write the PICT format to a file.

Tip: To read images without specifying the file type:

Call xvt_image_read.

The xvt_image_read function examines the first few bytes of
the file, then calls the appropriate xvt_image_read_* function.
12-15

Tip: To save image files:

Call xvt_image_write_bmp_to_iostr.

The XVT Portability Toolkit stores images in a file format
compatible with the Win32 BMP format.

Note: Currently, the BMP format is the only one that the XVT Portability
Toolkit can write (with the exception of the PICT format for
Macintosh).

Tip: To save an image in Macintosh PICT format (XVT/Mac only):
Call xvt_image_write_macpict_to_iostr.

XVT Portability Toolkit Guide

12-16

Scrolling

13
SCROLLING

To help you understand how to implement text scrolling in an XVT
window, this chapter presents three sample algorithms for handling
basic scrolling tasks:

• Setting the range, thumb position, and thumb proportion
parameters

• Responding to scrollbar activity
• Shifting the view in a window

The algorithms focus on scrolling text, because that is usually more
difficult than scrolling a generic graphical window. Although they
address several issues specific to handling text, you can easily adapt
the algorithms for scrolling graphics or other data. The algorithms
13-1

demonstrate several important scrolling functions:
• Showing an integral number of lines
• Preventing the user from scrolling past the end of the text
• Adjusting for the effects of E_FONT events
• Using lines instead of pixels as units
• Auto-scrolling
• Aligning patterns

In addition to the sample scrolling algorithms, this chapter discusses
some key scrolling terms and concepts, and gives a brief overview
of XVT-provided scrolling functions. After the algorithms, the
chapter discusses some special situations for which you might want
to create customized scrolling functions.

XVT Portability Toolkit Guide

13-2

13.1. Basic Scrolling Concepts
To understand what happens during scrolling, you should
understand some basic scrolling terminology and concepts:

• Scrollbar range (vertical and horizontal)
• Document origin
• Thumb position
• Thumb proportion
• Auto-scrolling

The following sections discuss each term.

Text text text text text text text

text text text text text text text

text text text text text text text

text text text text text text text

text text text text text text text

text text text text text text text

text text text text text text text

text text text text text text text

text text text text text text text

text text text text text text text

Window Title

max_v_origin :
furthest down the
user can scroll, to

vertical scrollbar
with proportional
thumb; its size
indicates that half the
document is in view

topline : the first
line visible in the
window

line 0: start of
the document

maxwidth : horizontal range

window width
(rct.right)
Figure 13.1. Scrollbar terms

text text text text text text text

text text text text text text text

text text text text text text text

text text text text text text text

text text text text text text text

text text text text text text text

text text text text text text text

text text text text text text text

prevent scrolling off
the end (vertical
range minus amount
visible)

max_h_origin : furthest the user can scroll
over, to prevent scrolling off the edge
(horizontal range minus amount visible)

partial last line:
not drawn unless
it all fits

Scrolling

13.1.1. Scrollbar Range
The scrollbar range is the allowable set of values (or positions)
the scrollbar thumb can have, both horizontally and vertically.
Operating a horizontal scrollbar generates E_HSCROLL events;
operating a vertical scrollbar generates E_VSCROLL events.

See Also: For more information about the E_HSCROLL and E_VSCROLL events,
see Chapter 4, Events.
Also see the “Events” section of the XVT Portability Toolkit
Reference.

Horizontal Range

All horizontal scrolling is done in terms of pixels. The sample
algorithms in this chapter use the length of the longest line,
measured in pixels, for the horizontal range.

Vertical Range

Text applications commonly set the vertical range to be the number
of lines of text in the document that is to be displayed in the window.

For documents with a large number of lines, this creates a problem
because the E_HSCROLL and E_VSCROLL events return a short
integer for the thumb position for SC_THUMB and SC_THUMBTRACK
event types, even though the xvt_sbar_set_range and xvt_sbar_set_pos
functions take integer arguments. The scrollbar range is therefore
13-3

limited to SHORT_MIN through SHORT_MAX values.

XVT did not arbitrarily decide on this limit; it is implicit in some of
the window systems on which XVT is implemented. For example,
SHORT_MAX is the largest value the Macintosh gives for a scrollbar
position, and the internal functions to set scrollbar values take a short
argument.

Mapping from Lines to a Scrollbar Range

In order to accommodate documents with more than SHORT_MAX
lines, an application must also provide a mapping from lines to an
artificial logical scrollbar range when it actually sets the vertical
scrollbar’s range, thumb position, and proportion.

Tip: The range should be large enough to ensure that not too many lines
map to the same scrollbar position. Once the range is larger than the
number of positions in which the thumb can be drawn, limited by
pixel resolution, some mapping occurs anyway. The range should
also be large enough that rounding error is insignificant.

XVT Portability Toolkit Guide

13-4

See Also: To see how a sample algorithm handles the scrollbar range, see
section 13.3.1.2 on page 13-9.

13.1.2. Document Origin
The document origin is the horizontal and vertical distance from
the beginning of the document to the beginning of the part of the
document currently in view in the window (see Figure 13.1).
The sample algorithms in this chapter internally keep track of the
document’s vertical origin and scrolling in terms of lines.

13.1.3. Thumb Position
The thumb position indicates which part of the document is in view
relative to the entire document:

• If the beginning of the document is in view, the thumb
position is at the top of the scrollbar range

• If the middle of the document is in view, the thumb is in the
middle of the scrollbar range

• If the end of the document is in view, the thumb position is
at the bottom of the scrollbar range

As the user scrolls through the document, the thumb position
changes to reflect the current location.

13.1.4. Thumb Proportion

The thumb proportion sets the size of the scrollbar thumb relative to
the range. It should indicate to the user how much of the document
is currently visible in a window.

Example: If half the text lines in the document are visible in the window, the
thumb should take up half of the scrollbar range. If all the text lines
are visible, the thumb proportion equals the scrollbar range and the
thumb fills the scrollbar. In this case, all the data is displayed, and
there is no room to move the thumb.

Note: When the thumb fills the scrollbar, some window systems make the
thumb or the entire scrollbar disappear.

Scrolling

Range versus Thumb Proportion Size

The usable part of the scrollbar range decreases by the size of the
thumb proportion. This produces exactly the desired effect when
implementing text scrolling—it confines the view to the bounds of
the text, preventing the user from scrolling past the end of the text.

Example: Consider a document with 100 lines (numbered 0-99), displayed in
a window large enough to view 20 lines at a time. If the vertical
scrollbar range is 0 to 100 and the thumb proportion is 20, the
effective or usable range is 80. That is, the user can scroll vertically
80 units. Initially, the first 20 lines of the document are displayed.

If the user scrolls the thumb all 80 units to the end of the scrollbar,
then line 80 is the first visible line in the window. Since the window
can show 20 lines, the remaining lines in the document (lines 80 to
99) are displayed, and the last line of the document is at the bottom
of the window.

Implementation Note: Some systems, such as Motif, physically display a proportional
thumb. On other platforms, including Macintosh, the thumb does not
physically show the proportion but does behave logically as if it
were proportional.

13.1.5. Auto-scrolling
Auto-scrolling lets the user scroll the contents of a window without
explicitly operating the scrollbars. To facilitate auto-scrolling, you
13-5

should separate the code that calculates the amount to scroll the view
from the code that actually shifts the view.

Auto-scrolling happens in response to E_MOUSE_MOVE events that
occur when the mouse is dragged outside of the window’s client area
usually while the user is selecting text. To get mouse events outside
of a window’s client area, you must trap the mouse.

When the mouse is trapped, the application receives
E_MOUSE_MOVE events as long as a mouse button is pressed, even if
the mouse is not being moved. XVT generates E_MOUSE_MOVE
events under these conditions specifically to permit the user to auto-
scroll.

See Also: For a sample auto-scrolling function, see section 13.1.5 on page
13-5.
For more information on trapping the mouse, see xvt_win_trap_pointer
and xvt_win_release_pointer
in the XVT Portability Toolkit Reference.

XVT Portability Toolkit Guide

13-6

13.2. XVT-provided Scrolling Functions
XVT provides functions for setting the range, thumb position, and
thumb proportion on a scrollbar:

• xvt_sbar_set_range
• xvt_sbar_set_pos
• xvt_sbar_set_proportion

XVT also provides functions for immediate processing of pending
updates (xvt_dwin_update) and scrolling the contents of a window
(xvt_dwin_scroll_rect).

See Also: For more information about specific functions, see the
XVT Portability Toolkit Reference.

13.3. Sample Scrolling Algorithms
This section outlines three sample algorithms, which accomplish
three basic tasks to enable scrolling:
Task 1: scroll_sync

Maintains the window’s range, thumb proportion, and thumb
position parameters as the view in the window changes; the user
can change the view by resizing, scrolling, or changing fonts.

Task 2: do_scroll
Calculates how much to scroll when a scrollbar is operated.

Task 3: shift_view
Shifts the view in the window appropriately.
Before looking at the algorithms themselves, review Figure 13.1 to
understand the components of the data and the window’s view that
they use.

Tip: XVT recommends assigning a separate function to each of the three
scrolling tasks. A single function could handle tasks 2 and 3, but
separating them facilitates auto-scrolling.

Note: The algorithms assume that all lines of text are displayed using the
same line height.

See Also: For a sample auto-scrolling function, see section 13.1.5 on page
13-5.

Scrolling

13.3.1. Task 1: Maintaining the Scrollbar Settings
(scroll_sync)
A sample function called scroll_sync handles the first task,
maintaining the scrollbar settings. This function is called during
three of a window’s events: E_CREATE, E_SIZE, and E_FONT.

Event: Effect:

E_CREATE Initialize all three scrollbar parameters.
E_SIZE The new window size allows a different

amount of the data to be shown in the
window. Adjust the thumb proportion
and position accordingly.

E_FONT The size and therefore the amount of text
displayed in the window changes. Adjust
the thumb proportion and position
accordingly.

The bottom line and right edge of the document should stay fixed to
the end/edge of the window when it is resized larger, as long as there
is text to scroll in from the top or left; see Figure 13.2.
13-7

XVT Portability Toolkit Guide

13-8

Figure 13.2. Window at the end of a document

max_v_origin
(vertical range minus
amount visible)

max_h_origin (horizontal
range minus amount visible)

If the window is
resized larger: as
long as there is
text "outside" the
top left corner of
the window, pull
the text along as if
the end of the
document is
attached to the
bottom right corner
of the window.

This window is scrolled
the maximum amount.
The user is not allowed
to scroll off the end of
the document.

Text text text text text text text

text text text text text text text

text text text text text text text

text text text text text text text

text text text text text text text

text text text text text text text

text text text text text text text

text text text text text text text

text text text text text text text

text text text text text text text

text text text text text text text

text text text text text text text

text text text text text text text

text text text text text text text

text text text text text text text

text text text text text text text

text text text text text text text

text text text text text text text

Window Title
13.3.1.1. Required Information for scroll_sync
The algorithm for scroll_sync assumes that at least the following
information is available. (For each document, this information is
usually carried in a data structure attached to the window displaying
the document.)
nlines

The total number of lines of text.
line_height

The height of a line of text, in pixels.
maxlines

The maximum width of the text, which is the length of the
longest line in pixels because horizontal scrolling is done in
pixel units (vertical scrolling is done in line units).

topline
The first line visible in the window’s view, which is actually
the vertical component of the origin.

Scrolling

horg
The horizontal origin, which in this case is in pixels.

See Also: For more information on attaching application data to a window,
see xvt_vobj_set_data in the XVT Portability Toolkit Reference.

13.3.1.2. Vertical Range and the VRANGE Macros
scroll_sync uses a vertical range of 0 to 10,000. Using zero as a lower
bound simplifies computation. The number 10,000 is large enough
to ensure that not too many lines map to the same scrollbar position,
and that the rounding error is insignificant.

To map to an arbitrary scrollbar range, the upper bound of the
vertical range (10,000) is #defined in a constant, VRANGE, which
can be changed easily. Two macros for scaling line numbers into this
range are defined as follows:

#define LinesToRange(x)(int)(((float)(x)/nlines) * VRANGE)

#define RangeToLines(x)(int)(((float)(x)/VRANGE) * nlines)

These macros apply to the arguments of any function manipulating
the vertical scrollbar range, thumb position, or proportion.
Essentially, they cause the scrollbar to work in its own logical
coordinate system.

13.3.1.3. The scroll_sync Algorithm
1) get the client rectangle for the window (in rct)
13-9

2) calculate visible_lines as rct.bottom / line_height

/* The scrollbar ranges are set as described above - horizontal to the width of the longest line in
pixels; vertical to an arbitrary logical range. The horizontal dimension (maxwidth) must be
updated anytime something changes the document width (for instance, whenever the font
changes). */

3) set the vertical scrollbar's range to [0, VRANGE]
4) set the horizontal scrollbar's range to [0, maxwidth]

/* Steps 5 - 8 keep the bottom line and right edge of the document 'glued' to end/edge of the
window when it is resized larger, as long as there is text to scroll in from the top or left
(see Figure 13.2). This can occur when the data is scrolled
to the end and then the window is resized. */

5) if (topline + visible_lines >= nlines)
6) shift the view so the last line of text stays at the

bottom of the window
7) if (horg + rct.right >= maxwidth)
8) shift the view so the right edge of the text stays at the

right edge of the window

/* The scrollbar proportion is set to the amount of the data currently in view, but it must not exceed
the maximum dimensions of the data (the scrollbar range). This could happen in the case that the
window is larger than the dimension of the data. The min in steps 9 and 10 prevents this from
happening. */

XVT Portability Toolkit Guide

13-10

9) calculate vert_proportion as min(visible_lines, nlines)
10) calculate horz_proportion as min(rct.right, maxwidth)
11) set the vertical scroll proportion to

LinesToRange(vert_proportion)
12) set the horizontal scroll proportion to horz_proportion

/* The vertical or horizontal thumb position is set to the vertical or horizontal component of the
document origin, but must not be outside the usable range of the scrollbar. Since the thumb
proportion decreases the usable range of the scrollbar, the usable range is (vertically) nlines -
vert_proportion. */

13) set the vertical thumb position to LinesToRange(min(topline,
nlines - vert_proportion))

14) set the horizontal scrollbar thumb position to min(horg,
maxwidth - horz_proportion)

13.3.2. Task 2: Calculating the Amount to Scroll
(do_scroll)
A sample function called do_scroll handles the second task,
calculating the amount to scroll.

When the user operates a scrollbar, generating an E_HSCROLL or
E_VSCROLL event, the do_scroll function decides how much to scroll
the view in the window. The do_scroll function calculates the amount
by which to scroll based on what scrollbar activity occurred. It then
calls shift_view (described in section 13.3.3).

In do_scroll, the application defines what it means by a line and a
page. Neither XVT nor the underlying window system can define a
line or a page, since neither keeps track of what data is being
displayed in the client area.
In a text application, you would naturally map the SC_LINE_UP and
SC_LINE_DOWN events to move the view by one line of text, and the
SC_PAGE_UP and SC_PAGE_DOWN events to move the view by one
window’s contents (the number of lines currently visible in the
window). During these scroll events, XVT does not set the pos field
of the scroll event structure. This field has a meaningful value only
when the event is an SC_THUMB or SC_THUMBTRACK type.

Note: The do_scroll algorithm presented here does not respond to
SC_THUMBTRACK events. To make it do so, add SC_THUMBTRACK
cases that execute the same code as the SC_THUMB cases. If the
application takes too long to update the window in response to these
events, then you might not be able to provide real-time response to
dragging the thumb.

Scrolling

13.3.2.1. Required Information for do_scroll
The algorithm for do_scroll requires the information needed by the
previous algorithm, scroll_sync, plus the following additional
information:
HINTERVAL

The distance (in pixels) to scroll as a “line” horizontally.

The distance scrolled vertically by LINE_UP or LINE_DOWN is the
height of a text line. The distance scrolled either horizontally or
vertically by PAGE_UP or PAGE_DOWN is the current width or height
of the window.

13.3.2.2. The do_scroll Algorithm
1) get the client rectangle for the window (in rct)
2) calculate visible_lines as rct.bottom / line_height

/* Next, we have the usual switches on the scrollbar activity. Each case calculates the new origin.
*/

3) switch (type) {
4) case HSCROLL:
5) calculate the maximum allowable amount to scroll

horizontally (max_h_origin) as max(0,
maxwidth - rct.right)

6) switch (what) {
7) case SC_LINE_UP:
8) set new origin to max(0, horg - HINTERVAL)
9) case SC_LINE_DOWN:

/* If the horizontal origin is not less than the maximum allowable horizontal origin, then there is
no room to scroll further. The edge of the document is already in view. However, the user could
13-11

resize the window larger, leaving white space past the edge of the text in the view. If the mouse
is used on the LINE_DOWN arrow, simply resetting the origin (without the if statement below)
would cause the text to jump to the right - the opposite of what the user expects. Instead, the if in
step 10 below prevents the origin from changing at all when it is already at the end
(See Figure 13.2). */

XVT Portability Toolkit Guide

13-12

10) if (horg < max_h_origin)
11) set new origin to min(max_h_origin, horg +

HINTERVAL)
12) case SC_PAGE_UP:
13) set new origin to max(0, horg - rct.right)
14) case SC_PAGE_DOWN:
15) set new origin to min(max_h_origin, horg + rct.right)
16) case SC_THUMB:
17) set new origin to the new thumb position in the event

structure
18) }
19) shift the view horizontally by horg - new origin
20) case VSCROLL:
21) calculate the maximum allowable amount to scroll

vertically (max_v_origin) as
max(0, nlines - visible_lines)

22) switch (what) {
23) case SC_LINE_UP:
24) set new origin to max(0, topline - 1)
25) case SC_LINE_DOWN:

/* If the vertical origin is not less than the maximum allowable vertical origin, then there is no
room to scroll further. The end of the document is already in view. However, the user could resize
the window larger, leaving white space past the end of the text in the view. If the mouse is used
on the LINE_DOWN arrow, simply resetting the origin (without the if statement below) would
cause the text to jump down - the opposite of what the user expects. Instead, the if in step 26 below
prevents the origin from changing at all when it is already at the end (See Figure 13.2). */

26) if (topline < max_v_origin)
27) set new origin to min(max_v_origin, topline + 1)
28) case SC_PAGE_UP:
29) set new origin to max(0, topline - visible_lines)
30) case SC_PAGE_DOWN:
31) set new origin to min(max_v_origin, topline +

visible_lines)

/* The vertical thumb position must be mapped into a line number because it is in the logical
scrollbar range. */
32) case SC_THUMB:
33) set new origin to RangeToLines(new thumb position in

the event structure)
34) }
35) shift the view vertically by topline - new origin
36) }

Scrolling

13.3.3. Task 3: Scrolling the View Window (shift_view)
A sample function called shift_view handles the final task, scrolling
the view in the window in response to scrollbar operation.

The shift_view algorithm scrolls the view in the window. It first
adjusts the document origin to reflect the amount scrolled, then calls
xvt_dwin_scroll_rect to scroll the view. It also sets the new thumb
position and, in text scrolling, forces an update for the bottom of the
client area if a partial line was left.

13.3.3.1. Required Information for shift_view
The algorithm for shift_view requires the following information:
dh and dv

The horizontal and vertical distances to shift the view.
max_h_origin and max_v_origin

The maximum allowable horizontal and vertical origins
(see Figure 13.2).

13.3.3.2. The shift_view Algorithm
1) if both dh and dv are zero then return because there is no

scrolling to be done
2) get the client rectangle for the window (in rct)

/* Make sure all pending updates are processed before changing the origin. If update events that
were generated before the scrolling occurred are still pending in the native system's event queue,
and have not yet been processed by the application, they must be processed while the document's
13-13

origin is the same as it was when the update event was generated. If these events aren’t processed,
the scrolling code will change the document's origin and when the updates eventually are
processed the text will be drawn in the wrong place. */

3) call xvt_dwin_update to process any pending update events

/* If there is vertical scrolling to be done, the vertical origin must be adjusted and the scrollbar's
thumb position reset. The bottom of the rectangle is then reduced to match the bottom of the last
line of text. This scrolls only the full lines of text in the view, not a partial line of white space. */

4) if (dv != 0) {
5) set vertical origin (topline) to topline - dv
6) set the vertical thumb position to

LinesToRange(min(max_v_origin, topline))
7) save the current rct.bottom (in bottom)
8) reset rct.bottom to an integral line boundary
9) }

/* If there is horizontal scrolling to be done, the horizontal origin must be adjusted and that
scrollbar's thumb position reset. */

10) if (dh != 0) {
11) set horizontal origin (horg) to horg - dh
12) set the horizontal scrollbar thumb position to

min(max_h_origin, horg)
13) }

XVT Portability Toolkit Guide

13-14

/* Here, the algorithm actually shifts all the pixels in the view by the designated amount. */

14) scroll the view in the window (rct) by (dh, dv*line_height)
with xvt_dwin_scroll_rect

/* If there was a partial last line at the bottom of the view, force an update to clear it and redraw
in case a whole line now
fits. */

15) if (dv != 0 && bottom != rct.bottom){
16) rct.top = rct.bottom
17) rct.bottom = bottom
18) force an update on the rct with xvt_dwin_invalidate_rect
19) }

13.3.3.3. A Sample Function for Auto-scrolling
Auto-scrolling lets the user scroll the contents of a window without
explicitly operating the scrollbars. For instance, if a user drags the
mouse outside the bottom of a window, the view of the data in the
window shifts to bring lines below the bottom up into view.

To implement auto-scrolling, you follow these general steps:
• Translate the mouse’s physical coordinates to the logical

space in which the application model is working
• Calculate what direction(s) and distance the mouse lies

outside the top, bottom, left, or right of the window
• Once you have this information, call the shift_view function

(shown below) to move the data that is logically outside of
the window into view from that direction

Tip: If you use the mouse-to-window distance to control the scrolling

amount, the user can autoscroll faster or slower by moving the
mouse further from or closer to the window border.

Note: You must write the shift_view function to allow both horizontal and
vertical scrolling to occur simultaneously. This effect can only be
achieved during auto-scrolling, not when scrolling with the
scrollbars, since only one scrollbar can be operated at a time.

Scrolling

Sample shift_view Function for Auto-scrolling

Below is a sample shift_view function. Note that this function works
for an arbitrary window, whether text or graphics.
void XVT_CALLCONV1 shift_view(WINDOW win, int dx, int dy,

PNT *pntp)
{

WINDOW_INFO *wip = get_win_info(win);
RCT rct;

/* Align on an 8-pixel boundary */
dx = (dx >= 0 ? 1 : -1) * ((abs(dx) + 7) / 8) * 8;
dy = (dy >= 0 ? 1 : -1) * ((abs(dy) + 7) / 8) * 8;
xvt_dwin_update(win);
if (dx != 0) {

if (dx > 0)
dx = min(dx, wip->origin.h);

else
dx = max(dx, wip->origin.h - wip->range.h);

wip->origin.h -= dx;
xvt_sbar_set_pos(win, HSCROLL, wip->origin.h);

}
if (dy != 0) {

if (dy > 0)
dy = min(dy, wip->origin.v);

else
dy = max(dy, wip->origin.v - wip->range.v);

wip->origin.v -= dy;
xvt_sbar_set_pos(win, VSCROLL, wip->origin.v);

}
xvt_vobj_get_client_rect(win, &rct);
xvt_dwin_scroll_rect(win, &rct, dx, dy);
if (pntp != NULL) {

pntp->h += dx;
pntp->v += dy;
13-15

}
}

13.3.3.4. Aligning Patterns
The shift_view code in the previous section rounds the horizontal and
vertical scrolling distances (dx and dy) to the nearest multiple of 8.
This is done when scrolling graphical data that might contain
background or fill patterns because native window systems always
align patterns on certain pixel boundaries.

Eight-by-eight patterns are almost universal. In many cases the
pattern drawing is done at the hardware level, which means that
eight-by-eight boundaries are quite deeply rooted.

XVT Portability Toolkit Guide

13-16

13.4. Special Scrolling Situations
The algorithms in this chapter have dealt with scrolling text in a
window. You can easily modify them to scroll graphics in a window.
However, in other situations you must customize your own scrolling
methods:
Scrolling Columns in a Spreadsheet

When the user selects one of the arrows on the horizontal
scrollbar, you might want to scroll the spreadsheet by a full
column. In this case, your application must keep track of the
widths of the columns. This width becomes the amount that the
spreadsheet is scrolled.

Dynamic Text Windows
Your application might include a window with non-static
information. For example, a word processing program might
bring in only one page of text at a time. While the user scrolls
within that page, the vertical scrollbar range must reflect the
entire size of the document (not just the page). In this situation,
your application can keep track of its data in terms of pages.
With each new page, add the number of lines represented by a
page to the range, and re-calculate the scrollbar’s attributes

Cursors and Carets

14
CURSORS AND CARETS

A cursor is the pointer or other shape that indicates the current
mouse position. A caret is a blinking vertical line that indicates
where the next typed character will appear. In addition to discussing
cursors and carets, this chapter tells how to trap the mouse while the
user is dragging it.

14.1. Cursors
The cursor indicates the current mouse position, with a pointer or
other shape. Each XVT window has a current cursor that you can set
to one of five standard shapes, or to a shape that’s defined as a
resource.
14-1

Tip: To set the cursor symbol:

Call xvt_win_set_cursor.

xvt_win_set_cursor can change the cursor (or mouse pointing symbol)
immediately to one of the following standard cursors:

CURSOR_ARROW Arrow (default)
CURSOR_CROSS Crosshair (positioning)
CURSOR_HELP Help symbol (question mark)
CURSOR_IBEAM I-beam (character sweep)
CURSOR_PLUS Plus sign
CURSOR_USER User-defined symbol
CURSOR_WAIT Wait symbol (platform-specific)

Tip: To find the current shape:
Call xvt_win_get_cursor.

XVT Portability Toolkit Guide

14-2

14.1.1. The Waiting Cursor
When you want to indicate to the user that an operation will take
a long time, you can easily set the cursor to the waiting shape
(a wristwatch or hourglass).

Tip: To set the waiting cursor:

Call xvt_scr_set_busy_cursor.

As soon as the next event occurs, the cursor automatically switches
back to the window’s current cursor shape.

Implementation Note: Some XVT platforms don’t support a waiting cursor. On these
platforms, xvt_scr_set_busy_cursor has no effect.

14.1.2. Hiding the Cursor
While the user is typing, you may want to hide the mouse cursor
to get it out of the way.

Tip: To hide the cursor:

Call xvt_scr_hide_cursor.

As soon as the user moves the mouse, the cursor reappears
automatically.

14.2. Trapping the Mouse
Occasionally, such as when the user is dragging the mouse, you

don’t want the cursor shape to change, even if the mouse leaves the
client rectangle of the current window. You also might not want the
mouse to be used to perform any other activity, such as issuing menu
commands, closing the window, or activating another application. In
these cases, you can trap the mouse.

Tip: To trap the mouse:

Call xvt_win_trap_pointer.

As soon as dragging stops, you must remember to free the mouse
with xvt_win_release_pointer.

Another benefit of trapping the mouse is that your application is
guaranteed to get an E_MOUSE_UP event, even if it occurs while the
cursor is outside of the window in which the previous
E_MOUSE_DOWN event occurred.

Cursors and Carets

While the mouse is trapped, E_MOUSE_MOVE events are generated
continuously, even if the mouse isn’t physically moved. This allows
you to implement auto-scrolling. When the user moves the mouse
out of the window or other designated area, scroll the data an
appropriate amount in the desired direction.

See Also: For more information about E_MOUSE_UP events, see section 4.5.14
on page 4-52.
For more information about scrolling, see Chapter 13, Scrolling.

14.3. Carets
A caret is a blinking vertical line that indicates where the next typed
character will appear. Typically, applications use a caret when a
window is in “text insertion” mode.

14.3.1. Logical vs. Physical Carets
Each regular (non-dialog) window in XVT possesses a “logical
caret.” The xvt_dwin_set_caret_visible function turns the logical caret on
and off. A window that has its logical caret turned on displays the
physical caret when the window has the focus, but does not display
the caret when the window loses focus.

Your application can turn on the logical caret for multiple windows
simultaneously. XVT then manages the caret as a visual cue to
indicate which window has focus. In addition, XVT automatically
14-3

hides a window’s physical caret when one of the following happens:
• The window is processing an E_UPDATE event
• You’re drawing text into the window with xvt_dwin_draw_text

• You’re scrolling the window’s contents with
xvt_dwin_scroll_rect

14.3.2. Hiding the Caret
In most cases, you won’t hide a caret for a window in “text
insertion” mode, because XVT takes care of that for you as
appropriate. However, you’ll want to hide the caret by using
xvt_dwin_set_caret_visible(win, FALSE) in the following situations:

• Your window leaves text insertion mode (such as when a text
selection is made).

• Outside an E_UPDATE, you draw graphical shapes other than
text, which may overlap the caret. This can happen, for

XVT Portability Toolkit Guide

14-4

example, if the user drags a graphical shape, and you track the
dragging in real time.

Tip: To hide the caret while the user is typing:
Call xvt_scr_hide_cursor.
When the mouse moves, the cursor reappears automatically.

14.3.3. Positioning and Sizing the Caret
If you are using the caret to track the insertion point for typing
(the usual case), you should position the caret so that it aligns with
the baseline of the text being drawn beside the caret.

XVT automatically sets the caret size to match the height of the
window’s current physical font. However, XVT does not
automatically move the caret when the user types—your application
must do that manually.

Tip: To reposition the caret:

Call xvt_win_set_caret_pos with the new position.
(You don’t have to call xvt_win_set_caret_visible.)

If you are displaying multiple physical fonts and styles, as is the
case in a word processor, then XVT’s calculation of the default
caret height based on the current physical font will not be adequate.

Tip: To set the caret size manually:

Call xvt_win_set_caret_size.
If you set caret size manually, position the caret so that it aligns
with the bottom of the physical font’s descender (as opposed to
the baseline), and set the caret height to be equal to the ascent+
descent+leading of the physical font displayed beside the caret.

Fonts and Text

15
FONTS AND TEXT

The XVT Portability Toolkit features an encapsulated font model.
Under this font model, an opaque object of type XVT_FNTID
identifies a logical font. XVT defines a logical font as a description
of a desired physical font—a particular implementation of a font
installed on a window system.

When your application needs to draw text, for instance in a window,
the Toolkit’s font mapping controller maps (i.e., matches) the
specified logical font to the closest available physical font. The
physical font is then used for rendering the text.

XVT’s encapsulated font model includes these key elements:
• Native physical fonts are supported
15-1

• You can create logical fonts explicitly or define them as
resources

• API functions let you modify and query attributes of logical
fonts (i.e., create, copy, get/set)

• You can write your own font mappers for applications, or
include font mapping in resource (XRC) specifications

• You can retrieve mapped attributes once logical fonts are
mapped to physical fonts

• Application users can select physical fonts through Font
Selection dialogs on all platforms

• You can write your own Font Selection dialog or use the
XVT Font Selection dialog

• Your applications can read or write logical fonts to and from
files, using serializing/deserializing functions

Figure 15.1 shows typical steps you would take when using a logical
font in an application.

XVT Portability Toolkit Guide

15-2

Figure 15.1. Using a logical font

The rest of this introductory section introduces you to some
fundamental definitions and concepts of XVT’s encapsulated font
model. The sections that follow discuss the concepts in greater
detail.

See Also: For sample usage of the XVT encapsulated font model, see the Font
Mapper (samples/design/fontmap) example in the PTK example
set.

15.1. Font Terminology
To help you understand how XVT’s encapsulated font model works,
this chapter uses the following XVT-defined terms.
Font

Create logical font

Set logical font attributes

Assign logical font to a window

Map logical font to a physical font

Draw text or make font system inquiries

Destroy logical font
A set of graphic shapes with a unified design, used to represent
characters on an output device. The design itself is called a
typeface. A set of typefaces designed to work together is called
a typeface family, or family. For example, the Times family
contains several typefaces: Times Roman, Times Bold, and
Times Italic.

Typeface
The underlying design of a font (without consideration of the
font size or weight).

Physical font
A particular implementation of a font as installed on the
window system on which an application is running.

Logical font
A description of a desired physical font, to a degree of
specificity ranging from just a typeface family name or size to

Fonts and Text

a complete description that specifies a particular physical font.
A logical font has both portable and non-portable attributes.
It is identified by an object of type XVT_FNTID.

Font mapping
The process of matching a logical font to the physical font that
most closely resembles it. Once this match has been made,
the logical font is “mapped.”

Font mapper
A function or method that performs font mapping. Some font
mappers are included in the XVT Portability Toolkit, while
others are supplied by applications.

XVT font mapping controller
The XVT function, invoked by xvt_font_map, which directs
a sequential series of multi-level font mappers that perform the
mapping.

Font model
An approach to defining and manipulating logical and physical
fonts. In an encapsulated font model, such as the one the XVT
Portability Toolkit currently uses, the logical font’s internals are
opaque. In an exposed font model, they are open or visible.

15.2. Basic Font Concepts
This section briefly describes the following basic concepts of the
15-3

encapsulated font model: logical font attributes, logical font
functions, font mappers, Font Selection dialogs, and Font/Style
menus. All are explained in greater detail in later sections of this
chapter.

15.2.1. Logical Font Attributes
Logical font attributes describe a desired physical font. All the
attributes except the native descriptor are portable:

• Application data
• Family
• Size
• Style mask
• Window
• Metrics
• Is mapped

XVT Portability Toolkit Guide

15-4

• Is scalable
• Is valid
• Is printable
• Has valid native descriptor
• Native descriptor (non-portable)

See Also: For more information about logical font attributes, see section 15.3.1
on page 15-7.

15.2.2. Logical Font Functions
XVT provides many functions that manipulate logical fonts.
Basically, you can perform the following operations on a logical
font:

• Creating (taking the default XVT attributes)
• Setting or inquiring attributes (setting or getting attributes

or mapped attributes)
• Assigning (assigning a logical font to a window for drawing)
• Copying (including copying of selected attributes set)
• Mapping (mapping the logical font attributes into a native

font descriptor)
• Unmapping (canceling and freeing any physical font

mapping contained within a logical font)
• Serializing and deserializing (reading and writing logical
fonts to and from files)
• Destroying (unmapping and freeing the logical font)

See Also: For information about creating, assigning, destroying, and copying
logical fonts, and setting or inquiring their attributes, see section
15.4 on page 15-10.
For information about mapping or unmapping logical fonts, or
setting or inquiring mapped attributes, see section 15.5.5 on page
15-22.
For information about serializing/deserializing logical fonts, see
section 15.8.3 on page 15-37.

Fonts and Text

15.2.3. Font Mappers
A font mapper matches a logical font with an equivalent physical
font. XVT’s encapsulated font model supports a multi-level font
mapping strategy—you can write your own mapper, provide
mappings for the XRC font mapper, or simply use the default XVT
mapper.

An XVT-supplied font mapping controller determines which
method is used. If an application-supplied font mapper or XRC
mappings are not present, or are present but don’t successfully map
the logical font, the default XVT mapper is guaranteed to produce a
valid mapping, even if it must use a system font to do so.

Figure 15.2 shows the multi-level mapping strategy used by the font
mapping controller:

If mapping is already valid, exit
Use native descriptor, if it is set

Use application-supplied font mapper, if defined
Use application-supplied XRC mappings, if defined

Use XVT default font mapper

LOGICAL FONT XVT WINDOW
15-5

Figure 15.2. How the font mapping controller works

See Also: For more information about multi-level mapping, see section 15.5.2
on page 15-20.

Logical font is mapped to a physical font

XVT Portability Toolkit Guide

15-6

15.2.4. Font Selection Dialogs
XVT’s encapsulated font model lets application users interactively
set logical font attributes in a dialog. XVT provides a Font Selection
dialog that shows all the physical fonts on a given system (the dialog
conforms to native look-and-feel). Or, you can design customized
Font Selection dialogs for your applications, using either XVT font
mapper inquiry functions or native font inquiry functions.

See Also: For more information about Font Selection dialogs, see section 15.6
on page 15-30.

15.2.5. Font/Style Menus
On some systems, users can also interactively set logical font
attributes by means of a Font/Style menu. Applications don’t
supply their own Font/Style menus, because these are inherently
non-portable. Instead, XVT provides appropriate standard menus.
Font/Style menus are available only on the XVT/XM and XVT/Mac
platforms.

Note: On platforms that don’t have Font/Style menus, users can select
physical fonts from the Font Selection dialog. On XVT/Win32,
XVT provides a Font Selection dialog instead of a menu because it
better conforms to native look-and-feel.

See Also: For more information about Font/Style menus, see section 15.7 on
page 15-33.

Fonts and Text

15.3. Logical Fonts
A logical font is a description of a desired physical font. The
description is composed of attributes such as the typeface family
name, size, and style. The attributes describe the physical font that
the application eventually wants to be mapped onto the logical font.
All but one of these attributes (native descriptor) are portable.

15.3.1. Logical Font Attributes
The tables in this section show logical font attributes: portable and
non-portable. The third column in each table indicates whether you
can set or get each attribute, and also whether you can get the
mapped value of the attribute (i.e., the attribute as realized in the
physical font that the logical font was mapped to).

15.3.1.1. Portable Attributes
The following table shows the portable attributes that you can use
to describe a logical font:

Attribute: Data Type: Access:

application_data void* Set/Get
family char* Set/Get,

get mapped
size long Set/Get,
15-7

get mapped
style_mask XVT_FONT_STYLE_MASK Set/Get,

get mapped
window WINDOW Get
metrics int Get

application_data
Application-specific information. This field is primarily useful
for communicating information to an application-provided
font mapper. XVT ignores this data. When you copy a logical
font with xvt_font_copy, only a pointer to the application data is
copied, not the data itself.

family
Specifies the logical font family as a string.

size
Logical font size in points.

style_mask
A bit mask of flags controlling individual styles such as bold

XVT Portability Toolkit Guide

15-8

or italics. A set of application-specific style flags has been
reserved for use with an application-supplied font mapper.

window
The window associated with a mapped logical font. XVT’s font
mapping controller assigns this attribute when an application
requests that a logical font be mapped. For all non-mapped
logical fonts, it is NULL_WIN.

metrics
The font’s leading, ascent, and descent. This information is
available only for mapped logical fonts.

See Also: For more information about setting and getting the portable
attributes for a logical font, see section 15.4.4 on page 15-12.

15.3.1.2. Non-portable Native Descriptor Attribute
The following native descriptor attribute is filled in when a logical
font is mapped, either by the application (with an application-
supplied font mapper) or by the XVT Portability Toolkit (with the
XRC mapper or the XVT default font mapper):

Attribute: Data Type: Access:

native_descriptor char* Set/Get

native_descriptor
A string that describes a physical font. The contents of
this string are platform-specific, and the string can contain

multibyte characters. When this attribute is set and the physical
font it describes actually exists, the font mapping controller uses
this attribute to map the logical font.

See Also: For more information about native descriptors, see section 15.4.4.1
on page 15-15.
For details about the platform-specific contents of this string, see the
“Native Font Descriptors” section in the XVT Platform-Specific
Books.

Fonts and Text

15.3.1.3. Mapped Logical Font Inquiry Attributes
The attributes in the following table represent inquiries you can
make about mapped logical fonts:

Attribute: Data Type: Access:

is_mapped BOOLEAN Get
is_print BOOLEAN Get mapped
is_scalable BOOLEAN Get mapped

is_mapped
Indicates that the logical font has been mapped into a physical
font. Once a logical font has been mapped into a physical font,
the mapped attribute inquiries return values from the physical
font.

is_print
Indicates that the font has been mapped into a print window and
that the mapped logical font is a printer font.

is_scalable
Indicates that the mapped logical font can be scaled to arbitrary
size.

Note: Any attempt to access “mapped” attributes on an unmapped logical
font results in an error.

15.3.1.4. Default Logical Font Attribute Values
15-9

The default logical font attributes are:

Attribute: Default Value:

family System
style_mask XVT_FS_NONE
size 12
application_data NULL
window NULL_WIN
native_descriptor NULL

XVT Portability Toolkit Guide

15-10

15.3.2. XVT_FNTID
A logical font is identified by an object of type XVT_FNTID, which
is opaque to applications. Because the XVT_FNTID is opaque, you
cannot directly access its internals. Instead, XVT provides access
functions that you can use to get and set its attributes.

See Also: For more information about XVT_FNTID, see the XVT Portability
Toolkit Reference.

15.4. Working with Logical Fonts
This section describes some of the actions you can perform on
logical fonts. The next section, section 15.5, describes font mapping
functions.

See Also: For detailed information about each function mentioned in the
following sections, see their individual descriptions in the XVT
Portability Toolkit Reference.

15.4.1. Creating and Destroying Logical Fonts
To use a new logical font in an application, your application must
allocate it in one of several ways:

• Create the logical font by calling xvt_font_create

• Define the logical font in a resource file, then get it with
xvt_res_get_font

• Create the logical font by calling the inquiry functions

xvt_dwin_get_font, xvt_menu_get_font_sel, or xvt_ctl_get_font

A logical font allocated by these functions has certain attributes with
either default or explicitly set values. When an application program
creates a logical font, that application “owns” the logical font and
must destroy it later when it is no longer needed (see section 15.4.3).
Allocating a logical font with a call to any of the functions listed
above requires a corresponding call to xvt_font_destroy.

Tip: To create a logical font:

Call xvt_font_create.

Calling xvt_font_create allocates a logical font with default values (see
list of default values in section 15.3.1.4 on page 15-9), and returns
the XVT_FNTID to the calling function.

Fonts and Text

Tip: To change logical font values from their defaults:
Use the font attribute setting functions (for more details, see
section 15.4.4 on page 15-12).

Tip: To free the space used by an application-owned logical font:
Call xvt_font_destroy.

15.4.2. Using Logical Fonts from Resource Files
Instead of creating logical fonts with xvt_font_create, you can define
them in resource files. For example, if your application knows in
advance that it needs several logical fonts with known attributes, you
could define them all as resources.

Tip: To use logical fonts from a resource file:

1. Define the logical fonts in an XRC file, using font or font_map
statements.

2. Call xvt_res_get_font to allocate the logical fonts.

See Also: For more information about font and font_map statements, see section
15.5.7 on page 15-25.
For more information about creating logical fonts, see section 15.4.1
on page 15-10.

15.4.3. Logical Font Ownership
15-11

An application owns any logical fonts it creates. This applies to
logical fonts created by these functions: xvt_font_create, xvt_res_get_font,
xvt_dwin_get_font, xvt_menu_get_font_sel, and xvt_tx_get_font.

The XVT Portability Toolkit manages the creation and destruction
of its own internal logical fonts. Your application must concern itself
only with the creation and destruction of the logical fonts that it
owns.

Logical font ownership is important because the logical font’s
owner must remember to destroy the logical font when it is no longer
needed. Otherwise, the logical font unnecessarily consumes
resources.

XVT EVENTs and WIN_DEFs can contain logical fonts. Your
application should not attempt to destroy logical fonts contained
in WIN_DEFs and EVENTs when the Toolkit creates those structures.
Of course, when your application creates these structures, it is
responsible for freeing them and their contained logical fonts.

XVT Portability Toolkit Guide

15-12

When an XVT_FNTID appears in a structure, such as E_FONT, the
owner of that structure also owns that internal logical font. Font IDs
in EVENTs have exactly the same lifespan as the EVENT structure
itself.

Caution: You might be tempted to save an XVT_FNTID from a Toolkit-
generated EVENT and use it after the EVENT has disappeared. This
does not work. Doing so inevitably leaves the application with a
font_id that refers to a deleted internal font. To properly copy the
font_id from an EVENT, you should call xvt_font_copy.

15.4.4. Setting and Getting Logical Font Attributes
If your application needs to set or get logical font attributes, it can
call the logical font attribute access functions. Setting any attribute
to a new and different value invalidates any previous font mapping.

For example, if the application sets the family, style_mask, size,
application_data, or native_descriptor for a mapped logical font, and if the
new value of the attribute differs from the old value, the XVT
Portability Toolkit automatically calls xvt_font_unmap to unmap the
logical font.

Example: This example shows how you can construct a 14-point, bold, italic
Helvetica logical font:

XVT_FNTID font_id = xvt_font_create();
xvt_font_set_family(font_id, XVT_FFN_HELVETICA);
xvt_font_set_style(font_id, XVT_FS_BOLD | XVT_FS_ITALIC);
xvt_font_set_size(font_id, 14);
Tip: To set logical font attributes:

Call xvt_font_set_app_data, xvt_font_set_family, xvt_font_set_native_desc,
xvt_font_set_size, or xvt_font_set_style.

When you set multiple logical font attributes, you must set the
native_descriptor last, because any setting of family, size,
style_mask, or application_data could destroy the native font descriptor
and thus unmap the logical font.

See Also: For more information about setting the native font descriptor, see
section 15.4.4.1 on page 15-15.

Tip: To set logical font attributes for a font associated with a window:
Call xvt_dwin_set_font_app_data,
xvt_dwin_set_font_family,
xvt_dwin_set_font_native_desc,

Fonts and Text

xvt_dwin_set_font_size, or
xvt_dwin_set_font_style.

Tip: To get portable logical font attributes:
Call xvt_font_get_app_data,
xvt_font_get_family,
xvt_font_get_size, or
xvt_font_get_style.

Tip: To get portable logical font attributes for a font associated with
a window:

Call xvt_dwin_get_font,
xvt_dwin_get_font_app_data,
xvt_dwin_get_font_family,
xvt_dwin_get_font_size, or
xvt_dwin_get_font_style.

Tip: To get mapped logical font attributes:
Call xvt_font_get_family_mapped,
xvt_font_get_metrics,
xvt_font_get_native_desc,
xvt_font_get_size_mapped, or xvt_font_get_style_mapped.

Tip: To get mapped logical font attributes for a font associated with
a window:
15-13

Call xvt_dwin_get_font_family_mapped, xvt_dwin_get_font_metrics,
xvt_dwin_get_font_native_desc, xvt_dwin_get_font_size_mapped, or
xvt_dwin_get_font_style_mapped.

Example: The following code creates a logical font and sets the values of its
portable attributes. It then maps the font, assigns it to a window,
and draws text in the window.

/* create and initialize font */
XVT_FNTID font_id = xvt_font_create();
xvt_font_set_family(font_id, "new century schoolbook");
xvt_font_set_style(font_id, XVT_FS_BOLD | XVT_FS_ITALIC);
xvt_font_set_size(font_id, 14);

/* Map the font */
xvt_font_map(font_id, window);

xvt_dwin_set_font(win, font_id);
xvt_dwin_draw_text(win, x, y, “hello”, -1);
...
xvt_font_destroy(font_id);

XVT Portability Toolkit Guide

15-14

See Also: For details about each attribute discussed in this section, see section
15.3.1 on page 15-7.
For more information about how a font is mapped, see section 15.5
on page 15-19.
For details about functions that retrieve currently mapped font
attributes, see section 15.5.5 on page 15-22.

Fonts and Text

15.4.4.1. Setting Native Font Descriptors
When a logical font is mapped, its portable attributes are matched to
the closest available physical font. If you want to exactly specify a
particular physical font, your application must use a native font
descriptor. This is usually done inside an application-supplied
font mapper.

You can use a native font descriptor in two ways:
• As a parameter to xvt_font_set_native_desc, when writing your

own font mapper
• As part of an XRC font or font_map statement, for the XRC font

mapper (see section 15.5.7)

Native Font Descriptor String

A native descriptor is a string of data fields that textually describe a
physical font that resides on your system. The fields in the descriptor
represent the internal, or native, font selection attributes present on
each platform (for example, lfWeight or lfCharSet on XVT/Win32).

The native font descriptor string contains the following data:
• The native window system and version of the XVT

encapsulated font model (the current version is “01”).
• A platform-specific string that the XVT Portability Toolkit

can decode and use to locate and identify a physical font.
15-15

The platform-specific string is composed of separate fields
that describe the attributes of a physical font. Each field in the
string is separated by a slash, “/”.

The native font descriptor, then, has this format:
"<system and version>/<field1>/<field2>

<field3>/...<fieldn>"

System and Version

The system and version identifier in the native font descriptor must
be one of the following:

Identifier: Platform:

X11<vers> X Window System
MAC<vers> Macintosh
NT_<vers> MS-Windows (32-bit versions)

XVT Portability Toolkit Guide

15-16

Note: For this release, the version number of the font model system is 01.

Platform-specific Parameters

In the native font descriptor, you can provide parameters for the
following platforms: XVT/Win32, XVT/Mac, and XVT/XM. You
can also provide parameters for PostScript printing on XVT/XM.

See Also: For details about native font descriptor parameters for a particular
platform, see its XVT Platform-Specific Book.

Setting and Verifying Native Font Descriptors

Tip: To set the native font descriptor for a physical font:

Select a physical font from a Font Selection dialog.
-OR-
Call xvt_font_set_native_desc or xvt_dwin_set_font_native_desc.

If the font was previously mapped, these functions unmap it, leaving
the logical font in an “unmapped” state.

Note: You should call xvt_font_set_native_desc only from inside an
application-supplied font mapper (registered with XVT by means of
the ATTR_FONT_MAPPER attribute). If you call it outside such a
mapper, the logical font’s window attribute will probably be set
incorrectly, which produces an invalid mapping.

Tip: When you set multiple logical font attributes, you must set the
native_descriptor last, because any setting of app_data,

family, size, or style_mask to a new value destroys the native
font descriptor.

Tip: To determine if a native description is valid:

Call xvt_font_has_valid_native_desc.

A native description is valid if the font mapper recognizes it as an
accurate description of a physical font.

See Also: For more information about font attributes, see section 15.3.1 on
page 15-7.

Fonts and Text

15.4.5. Assigning Logical Fonts to Controls
and Windows

15.4.5.1. Controls
Tip: To assign a logical font to a control:

Call xvt_ctl_set_font.

The xvt_ctl_set_font function copies the contents of the application-
owned logical font into the drawing font of the control. The window
attribute of the logical font is not copied.

Tip: To get logical font information for a control:

Call xvt_ctl_get_font.

Note: The xvt_ctl_get_font function creates a new logical font, which it
returns to the application, just like the function xvt_dwin_get_font.

15.4.5.2. Windows
Tip: To assign a logical font to a window:

Call xvt_dwin_set_font.

The xvt_dwin_set_font function copies the contents of the application-
owned logical font into the drawing font of the window. The window
attribute of the logical font is not copied.
15-17

Tip: To get logical font information for a window:

Call xvt_dwin_get_font.

Note: The xvt_dwin_get_font function creates a new logical font, which it
returns to the application that contains a copy of the window’s
drawing font. The application owns the returned logical font, and
it is responsible for destroying the logical font when it is no longer
needed.

XVT Portability Toolkit Guide

15-18

Example: The sample code below creates a logical font and uses it to set the
drawing font for a window. The following code creates a logical
font, sets family, style, and size attributes for it, assigns it to a
window, and destroys it. Text drawn into the window is then
rendered using the specified logical font attributes:

XVT_FNTID font_id = xvt_font_create();
xvt_font_set_family(font_id, "new century schoolbook");
xvt_font_set_style(font_id, XVT_FS_BOLD | XVT_FS_ITALIC);
xvt_font_set_size(font_id, 14);
xvt_dwin_set_font(win, font_id);
xvt_font_destroy(font_id);
xvt_dwin_draw_text(win, "hello");

Calling xvt_dwin_draw_text ensures that the logical font is mapped
before the text is drawn. If the logical font has already been mapped,
it is not remapped.

The following code has the identical consequences as the previous
example. However, this code uses the xvt_dwin_set_font_* functions:

xvt_dwin_set_font_family(win, "new century schoolbook");
xvt_dwin_set_font_style(win, XVT_FS_BOLD | XVT_FS_ITALIC);
xvt_dwin_set_font_size(win, 14);
xvt_dwin_set_draw_text(win, “hello”);

Note: Changing the attributes of font_id after using it in the call to
xvt_dwin_set_font or xvt_ctl_set_font has no effect on the window’s font.

See Also: For more information about an application’s ownership of logical
fonts that it creates, see section 15.4.3 on page 15-11.
For more information about font mapping, see section 15.5 on page
15-19.

For more information about how to sets fonts (and colors) in
controls, see section 8.4 on page 8-56.

15.4.6. Copying Logical Fonts
You can copy logical font values from a source font to a destination
font. You need not copy the entire logical font. A font attribute mask
in the copying function tells which portions of the logical font to
copy.

Tip: To copy a logical font:

Call xvt_font_copy.

The xvt_font_copy function does not create or allocate any new logical
fonts. Both the source and destination logical fonts must have been
previously created by the application.

Fonts and Text

15.4.7. Verifying a Font ID
Tip: To determine if a font ID has been defined:

Call xvt_font_is_valid.

Tip: To identify a NULL font ID:
Use the following predefined macro:

#define NULL_FNTID ((XVT_FNTID)NULL)

For example:
if(font_id == NULL_FNTID)

xvt_dm_post_error("NULL font");

15.5. Font Mapping and the Font Mapping Controller
Before the XVT Toolkit can use any logical font—for drawing text
or answering inquiries about its mapped attributes—it must be
mapped into some available physical font. An XVT function called
the font mapping controller, which is invoked by xvt_font_map,
manages this conversion. The font mapping controller directs a
sequence of font mappers that perform the mapping.

The font mapping controller uses underlying font mappers to map a
logical font to a physical font. The font mappers do this by filling in
the native_descriptor attribute for the XVT_FNTID and marking
the logical font as “mapped.” If the logical font already has a valid
15-19

native descriptor, the font mapping controller uses it for mapping.

15.5.1. Font Mapping in an Encapsulated Font Model
The encapsulated font model can use several different mappers. If
more than one mapper is available, the font mapping controller tries
them in a predetermined order, until mapping succeeds.

The mapping always succeeds, although the resulting match may not
be exact. If the application never explicitly maps a logical font (by
calling xvt_font_map or xvt_font_map_using_default), the Toolkit
implicitly performs the mapping when the physical font is actually
needed to draw text or to answer a physical-font-related inquiry.

Tip: To list all logical font families supported by the font mapping
controller:

Call xvt_fmap_get_families.

XVT Portability Toolkit Guide

15-20

This function lists all logical font families supported by the font
mapping controller, exclusive of any application-supplied font
mappers.

Tip: To get attributes for supported logical fonts:

Call xvt_fmap_get_family_sizes, xvt_fmap_get_familysize_styles,
xvt_fmap_get_familystyle_sizes, or xvt_fmap_get_family_styles.

These functions get attributes for logical fonts supported by the
font mapping controller, exclusive of any application-supplied
font mappers.

See Also: For more information on the xvt_fmap_* functions, see the
XVT Portability Toolkit Reference.

15.5.2. The Multi-Level Mapping Process
When XVT code automatically calls for mapping, or when you
manually call xvt_font_map, the font mapping controller proceeds to
map the logical font. It does this by trying the following multi-level
methods in the order shown:

• If the logical font has already been mapped, use the mapped
physical font

• If the logical font is not already mapped, but the native
font descriptor has been set (either by calling
xvt_font_set_native_desc or by selecting attributes
from a Font Selection dialog), use this descriptor to map

the logical font

• If the logical font is not mapped and the ATTR_FONT_MAPPER
attribute has been set, use the application-supplied font
mapper

• If the logical font is still not mapped and application-supplied
XRC mappings have been provided, use them

• If the logical font is still not mapped, use the default XVT
mapper, xvt_font_map_using_default (guaranteed to succeed)

As soon as the logical font is successfully mapped, the controller
stops. In other words, once a successful mapping occurs, the rest of
the methods will not be tried.

The mapping is performed in the context of a window, even though
on some platforms a screen mapping may be the same for all
windows. Mappers must support both screen and print windows.

Fonts and Text

15.5.3. Types of Mappers
The multi-level mapping approach embodied in the font mapping
controller can use four types of mappers:
Native description mapper

If the font mapping controller detects that the logical font
already has a valid native descriptor, it invokes the native
description mapper to locate the physical font that matches that
native descriptor. If no native descriptor exists, the font
mapping controller tries the application-supplied font mapper.

Application-supplied font mapper
When a specific application requires customized mapping
strategies, you can write your own mapper. To use it, you’ll
register your mapper with the ATTR_FONT_MAPPER attribute.
If your application-supplied mapping does not map the logical
font, XVT’s font mapping controller calls the XRC font mapper
as a backup. An application-supplied font mapper might not
map a particular logical font for several reasons. For example:
• The mapper might be designed only to map logical fonts of

certain families or styles
• The physical font that the application-supplied font mapper

tries to use might not exist on the window system
XRC font mapper

The XRC font mapper tries to map the logical font using
optional application-supplied XRC font and font_map statements.
15-21

If the application doesn’t provide any font or font_map statements,
or if those provided don’t describe the specific logical font
being mapped, the XRC mapper returns without mapping (i.e.,
the logical font is left in an “unmapped” state). If the XRC
mapper does not map the logical font, the mapping controller
next tries the XVT default mapper.

XVT default font mapper
The XVT default font mapper is the “last chance” mapper. As
part of the XVT Portability Toolkit, it is guaranteed to succeed
in mapping the logical font to a physical font. The XVT default
mapper attempts to find a physical font that closely matches the
logical font. If no such match can be found, this mapper maps
the logical font onto a default system physical font.

See Also: For more information about the last three mappers, see sections
15.5.6, 15.5.7, and 15.5.8. For a sample application-supplied
font mapper, see the Font Mapper (samples/design/fontmap)

XVT Portability Toolkit Guide

15-22

sample in the PTK example set. You can use this Font Mapper
sample to generate sample XRC font mappings.

15.5.4. When Mapping Occurs
The font mapping controller is called in two situations, depending on
whether the logical font needs to be mapped automatically or
whether mapping has been manually requested:
Automatic (implicit) mapping

Whenever the XVT Portability Toolkit needs to draw text or
acquire text metrics, it calls the mapping controller
(xvt_font_map) to ensure that the font mapping is current.
This whole process occurs automatically whenever you call
xvt_dwin_draw_text, xvt_dwin_get_font_metrics, xvt_font_get_metrics, or
xvt_dwin_get_text_width.

Manual (explicit) mapping
When your application needs a runtime mapping for a logical
font, you can explicitly call either xvt_font_map (the font mapping
controller) or xvt_font_map_using_default. You call one of these
functions if you intend to draw with this logical font in several
windows (with xvt_dwin_set_font) or if you want to call any of the
mapped logical font attribute inquiry functions
(xvt_font_get_*_mapped).

In either case, a logical font is ultimately “mapped” when an
application calls either xvt_font_map (automatically or manually) or
xvt_font_map_using_default.
15.5.5. Mapping and Unmapping Logical Fonts
As explained in the previous sections, mapping occurs automatically
for previously unmapped logical fonts whenever XVT needs to draw
text or acquire text width or text metrics. But you can also map
logical fonts manually, for example in an application-supplied font
mapper.

You can also call different functions to inquire about mappings and
mapped attributes, or to unmap a logical font. Unmapping a logical
font does not affect any of the portable attributes or the native
descriptor, but it does release any physical font resources.

Tip: To manually map a logical font:
Call xvt_font_map.
-OR-

Fonts and Text

Call xvt_font_map_using_default
(to invoke the XVT default font mapper).

Tip: To unmap a logical font:
Call xvt_font_unmap.

Tip: To determine if a logical font is mapped:
Call xvt_font_is_mapped.

Tip: To determine if a logical font is mapped to a print font:
Call xvt_font_is_print.

Tip: To determine if a mapped logical font can be scaled:
Call xvt_font_is_scalable.

Tip: To get mapped logical font attributes:
Call xvt_font_get_family_mapped, xvt_font_get_native_desc,
xvt_font_get_style_mapped, or
xvt_font_get_size_mapped.

15.5.6. Application-Supplied Font Mappers
If you wish, you can create an application-supplied font mapper
for your application. You then register the application-supplied font
15-23

mapper by using xvt_vobj_set_attr to set the XVT_FONT_MAPPER
attribute. You can retrieve current application font mapper function
pointers with xvt_vobj_get_attr.

Tip: To use an application-supplied font mapper:

1. Create your application-supplied mapper.

2. Set the ATTR_FONT_MAPPER attribute. For example:
xvt_vobj_set_attr(NULL_WIN, ATTR_FONT_MAPPER, (long)

my_font_mapper);

where my_font_mapper is an application function.

The window argument for the set or get function is not used for this
attribute. The argument to the xvt_vobj_set_attr function is the font
mapper pointer. The type definition for the font mapper is as
follows:

typedef void (*XVT_FONT_MAPPER)(XVT_FNTID font_id)

XVT Portability Toolkit Guide

15-24

The application-supplied font mapper is called by the font mapping
controller whenever mapping is needed; or, in other words,
whenever xvt_font_map is invoked by the application or when
font mapping occurs automatically.

The application-supplied font mapper can map a logical font in
two ways:
Portable method

With the portable method, the application-supplied font mapper
relies on XVT mappers (default and XRC-based) to perform the
mapping, but under the application-supplied mapper’s control.
The application mapper calls the XVT mappers (usually
xvt_font_map_using_default), but if not satisfied with the result it
changes the portable attributes and tries mapping again. When
it is finally satisfied with mapping, it exits.

Native method
With the native method, the application-supplied font mapper
uses native font inquiries to build the native font descriptor.

With either method, an application-supplied font mapper must pay
attention to the logical font’s window type, because a different
mapping may be required for print and screen windows. The
window is embedded in the logical font, and can be gotten with
xvt_font_get_win.

Note: After the application-supplied font mapper modifies
the logical font attributes, it must call either xvt_font_map or
xvt_font_map_using_default to complete the mapping.

Fonts and Text

Example: Here is an example of a simple application-supplied font mapper
for XVT/XM, which uses the native method described above:
BOOLEAN XVT_CALLCONV1 my_font_mapper(XVT_FNTID font_id)
{

char native_desc[256]; /*XLFD font name */
char* family = xvt_font_get_family(font_id);
XVT_FONT_STYLE_MASK style = xvt_font_get_style(font_id);
long size = xvt_font_get_size(font_id);
BOOLEAN found = FALSE;
char size_string[10];
WINDOW win = xvt_font_get_win(font_id);
xvt_str_copy (native_desc, "X1101/");
if (xvt_str_compare_ignoring_case(family,

"new century schoolbook") == 0) {
found = TRUE;
xvt_str_concat (native_desc,

"adobe/new century schoolbook/");
if (style & XVT_FS_BOLD)

xvt_str_concat (native_desc, "bold/");
else

xvt_str_concat (native_desc, "medium/");
if (style & XVT_FS_ITALIC)

xvt_str_concat (native_desc, "i/");
else

xvt_str_concat (native_desc, "r/");
xvt_str_concat (native_desc, "normal//*/");
xvt_str_sprintf (size_string, "%d", size * 10);
xvt_str_concat (native_desc, size_string);
xvt_str_concat (native_desc, "/*/*/*/*/*/*");

}
xvt_mem_free(family);
if (found) {

xvt_font_set_native_desc (font_id, native_desc);
xvt_font_map_using_default (font_id);
15-25

return TRUE;
else

return FALSE;
}

See Also: For a sample application-supplied font mapper that uses the portable
method, see the Font Mapper (samples/design/fontmap) sample in
the PTK sample set.

15.5.7. XRC Font Mapper
You can place font definition and font mapping statements in an
application’s XRC file for two purposes:

• To provide customized extensions to the XVT default font
mapper. XRC font or font_map statements, which are used by
the built-in XRC font mapper, extend the default font
mapping but do not replace it.

• To define logical fonts as resources, as an alternative to
creating them with xvt_font_create. You can then allocate the
logical fonts by calling xvt_res_get_font.

XVT Portability Toolkit Guide

15-26

To provide mappings for the XRC font mapper, you can define a
series of logical fonts and corresponding mappings in the XRC file.
When the application calls a function that forces an explicit
(xvt_font_map) or implicit (xvt_dwin_draw_text) font mapping, the
mapper attempts to match each definition in the series, in ascending
numeric order (by font or font_map resource ID). If it finds a match, it
then maps the logical font to the corresponding specification string.

Note: Although the native descriptor portion of XRC font statements is
platform-specific, the built-in XRC font mapper that processes them
operates generically across all platforms.

See Also: For more information about using logical fonts from resource files,
see section 15.4.2 on page 15-11.
For a sample customized font selection dialog that uses the portable
method mentioned above, see the Font Mapper (samples/design/
fontmap) sample in the PTK example set.

15.5.7.1. XRC Font Resource Types
To provide font mapping extensions or define logical fonts in the
XRC file, you’ll specify two XRC resource types: font and font_map.

Since the native descriptors in the XRC font statement are strings,
you can easily write and read them from files. You can also
manipulate them by using the portable API functions
xvt_font_get_native_desc and xvt_font_set_native_desc.

font Resource Type
font id family size [style] [map native_desc]

In the font resource, family, size, and [style] contain
the XVT portable attributes (family, size, style). For the size and
[style] fields, you can use the wildcard “any”. If the XRC font mapper
encounters a wildcard, it allows any size or style, respectively, to be
mapped to the specified native descriptor.

The [map native_desc] portion of the font statement is optional. See Tip,
below.

Example: Here is an example of how you would define “MYFONT101” in your
XRC file:

#define MYFONT101 1
font MYFONT101 "helvetica" 12 bold italic

Tip: You can avoid using the font_map statement altogether by appending
the native descriptor to the end of the font statement, preceded by the
keyword map, like this:

Fonts and Text

#define MYFONT101 1
font MYFONT101 "helvetica" 12 bold italic map "X1101\
adobe/helvetica/..."

font_map Resource Type
font_map id native_desc

The native_desc portion of the font_map statement is a native descriptor
string. It is the same as the optional native_desc
portion of the XRC font statement. It has the format required by the
function xvt_font_set_native_desc, and returned by the function
xvt_font_get_native_desc.

You can use wildcards in native_desc. If a native descriptor contains
wildcards, the corresponding portable attributes of the specific
logical font being mapped are used as the value of the native
attribute.

Example: Here is an example of how you would define a native mapping for
“MYFONT101” on XVT/XM:

#define MYFONT101 1
font_map MYFONT101 "X1101/adobe/helvetica/bold/i/\
///120/*/*/*/*/*/*"

See Also: For information about the contents of a native descriptor string, see
section 15.4.4.1 on page 15-15 plus a section dedicated to this
subject in each XVT Platform-Specific Book.
15-27

15.5.7.2. Using Multiple Resources for a Logical Font
You can use multiple XRC font resources for the same logical font,
varying only the native descriptor used as the value of the map
keyword. The XRC font mapper tries to use the mappings defined in
the font statements, in numerically increasing order of font resource
id. Here are multiple XRC font resources you might use for a
Helvetica bold logical font:

font 1 Helvetica any Bold map "native_desc_1"
font 2 Helvetica any Bold map "native_desc_2"
font 3 Helvetica any Bold map "native_desc_3"
...

In this example, the XRC font mapper first attempts to use the
mappings defined in font resource 1. If the logical font attributes
there do not match those of the font being mapped, or if they do
match but the physical font described by native_desc_1 does not exist,
the XRC font mapper tries the mapping defined in font statement 2.

If that fails, the mapper tries the rest of the font statements until one
succeeds or until no more font resources remain.

XVT Portability Toolkit Guide

15-28

Example: The following XRC code example shows how you could define five
logical fonts along with five mappings for them on XVT/XM:
font 1 "lucida" 10 bold italic
font 2 "lucida" 24 italic
font 3 "lucida" any any
font 4 "lucidabright" 12 bold
font 5 "lucidabright" 14 any

font_map 1 "X1101/b&h/lucida/bold/i/normal/sans/10/100/75\
/75/p/67/iso8859/1"
font_map 2 "X1101/b&h/lucida/bold/r/normal/sans/24/240/75\
/75/p/152/iso8859/1"
font_map 3 "X1101/b&h/lucida/*/*/normal/sans/*/*/*/*/*/*\
iso8859/1"
font_map 4 "X1101/b&h/lucidabright/demibold/r/normal//12\
120/75/75/p/71/iso8859/1"
font_map 5 "X1101/b&h/lucidabright/*/*/normal//14/140/*/*\
p/*/iso8859/1"

This is how mapping would work with the above XRC resources.
Suppose that an application created an XVT_FNTID and set its family,
style, and size to Lucida, bold, and 18, respectively. The mapper
would try to match this with font resource 1, which would match in
family but not in style or size. It would then try font resource 2,
which also would not match exactly because the size is wrong.

However, font resource 3 would match, because it matches the
family and specifies “any” for style and size. The logical font would
then be mapped to the specification in the font_map 3 string.
According to this string, the mapped logical font would be Lucida
bold, since the font statement wildcards the style. For size, 18 points
would be used, because the font_map statement contains a wildcard in
that field.
If these XRC specifications did not produce a successful match, the
font mapping controller would invoke the default XVT mapper to
perform the mapping.

Note: The mapping comparison for family is case-insensitive (i.e.,
“Lucida,” “lucida,” and “LUCIDA” all match).

15.5.8. XVT Default Font Mapper
The XVT default font mapper is the “last chance” mapper. It
includes mapping for at least the four standard logical font families
that XVT guarantees to support: System, Fixed, Times, and
Helvetica. Logical fonts with these family names are guaranteed to
map well across all XVT-supported platforms.

No such guarantee exists for less common logical font families such
as “Calligraphic” or “Avant Garde.” However, the XVT default font

Fonts and Text

mapper may provide other useful mappings for logical fonts that it
knows about.

Implementation Note: XVT’s default mapper uses whatever method is appropriate for a
particular platform. The XVT Portability Toolkits for various
platforms initialize their font mappers differently. XVT/XM
initializes from XRC strings; XVT/Mac, and XVT/Win32 have a
function that contains mapping logic.

A logical font is capable of being mapped as soon as it has been
created with xvt_font_create. XVT’s default mapper makes no
assumptions about what attributes the application has set in the
logical font. XVT’s default font mapper interprets the logical font
attributes like this:
native_descriptor

If the native_descriptor attribute is set and is valid, it takes
precedence over any portable attributes below. XVT’s default
font mapper parses this specification and attempts to load the
specified physical font.

family
If the native_descriptor is not set, the mapper attempts to map the
logical font family attribute onto a physical font that has the
same family. If no direct mapping is possible, a default font
family is used in the mapping.

style
If the native_descriptor is not set, XVT’s default font mapper
15-29

attempts to use the logical font style in the mapping. The style
is always set: a value of 0 corresponds to the macro
XVT_FS_NONE, which is itself a valid style. XVT’s default font
mapper attempts to find a physical font that has the same style
as the logical font being mapped. If no matching physical font
style is available, the mapper attempts to determine a “best fit”
for style within the family.

size
If the native_descriptor is not set, XVT’s default font mapper
attempts to match the logical font size as closely as possible
using a “best fit” algorithm.

XVT Portability Toolkit Guide

15-30

15.6. Font Selection Dialogs
Application users can interactively set logical font attributes from a
dialog. XVT provides a Font Selection dialog for this purpose, with
native look-and-feel, or you can provide a customized one. In the
Font Selection dialog, users can select the logical font attributes they
want to use from the full range of physical fonts available on the
system.

Once a user selects the desired attributes, an E_FONT event is
generated and the corresponding attributes (family, size, style, and
native_descriptor) are set for the logical font. The logical font is not
mapped at this point. When the logical font is mapped later for any
reason, the user’s selected attributes will be used.

Tip: To get the current state of the Font Selection dialog or the Font/Style
menu:

Call xvt_menu_get_font_sel.

Tip: To set the default logical font for a dialog or the Font/Style menu:
Call xvt_menu_set_font_sel.

See Also: For more information about what happens when E_FONT events are
generated, see section 15.7.2 on page 15-34 and section 4.5.8 on
page 4-31.
Also see the description of xvt_dm_post_font_sel in the XVT Portability
Toolkit Reference.
15.6.1. Implementing a Font Selection Dialog
XVT supplies a Font Selection dialog with a native look-and-feel.
This dialog is accessible from any menubar that uses the
DEFAULT_FONT_MENU. With it, your application can give users a
native look-and-feel dialog from which they can choose a physical
font and set the logical font attributes to be used in an XVT_FNTID.

Tip: To use XVT’s Font Selection dialog:
Call xvt_dm_post_font_sel.

-OR-
From the application’s Font/Style menu, select the menu
item that invokes the dialog. The default style dialog opens
automatically.

Fonts and Text

Note: The method of invoking the dialog from the Font/Style menu varies
among platforms, conforming to native look-and-feel.

15.6.2. Customized Font Selection Dialogs
You can write customized Font Selection dialogs for your
applications. When you do this, you have two basic options:
Native method

You can write the dialog natively. If you do this, you must rely
on native inquiries about the availability of physical fonts and
their attributes.

Portable method
You can write the dialog portably, using XVT portable font
attributes instead of native font attributes. If you do this, you
can use XVT inquiry functions to find out what logical fonts are
available and what logical attributes can be set. The information
returned by these functions comes from XVT’s default and
XRC-based font mappers.
15-31

XVT Portability Toolkit Guide

15-32

15.6.2.1. Implementing a Customized Font Selection Dialog
After you create a customized Font Selection dialog, you then
register the customized font dialog by using xvt_vobj_set_attr
to set its attribute.

Tip: To use a customized font dialog:

Set the ATTR_FONT_DIALOG attribute. For example:
xvt_vobj_set_attr(NULL_WIN, ATTR_FONT_DIALOG,

(long) my_font_dialog);

where my_font_dialog is an application function.

When creating a customized selection dialog, you can use the
following inquiry functions:

xvt_fmap_get_families
xvt_fmap_get_family_sizes
xvt_fmap_get_familysize_styles
xvt_fmap_get_familystyle_sizes
xvt_fmap_get_family_styles

The following section provides some guidelines for you to follow
when creating your dialog.

15.6.2.2. Guidelines for Creating Customized Dialogs
When creating a customized selection dialog, you should follow
these guidelines:

1. The user should be allowed to cancel the dialog without
changing the logical font.
2. The user should be allowed to change numerous logical font
attributes before dismissing the dialog.

3. The Font Selection dialog should be modal.

4. The dialog should send an E_FONT event to the window whose
WINDOW is passed into the function if the user makes a selection
from the dialog. If the calling function doesn’t want an E_FONT
event to be sent, it should pass NULL_WIN as the window
parameter to xvt_dm_post_font_sel. The font dialog event handler
passes the updated default_font_id font as part of the E_FONT event.

5. If the default_font_id is modified, the function should return TRUE.
If the default_font_id is not modified, the function should return
FALSE.

6. The dialog should test to see that the passed-in window is not
NULL_WIN before generating an E_FONT event. Similarly, the

Fonts and Text

dialog should confirm that the default_font_id is still valid before
modifying it.

7. If the window passed in is NULL_WIN, or if the user cancels the
dialog instead of exiting normally, no event is generated.

8. If the user makes a selection from the dialog and exits normally,
the modified default_font_id should contain a reasonable set of
logical font attributes that correspond closely to the dialog
selection. This includes the family, style, and size. If the dialog
is designed to select a specific physical font, the native
descriptor should also be set. Sometimes no exact match exists
between the selected physical attributes and the set of XVT
portable attributes; this would occur if the physical font
contains some attributes that don’t correspond to any XVT
portable attributes, or if the physical font has style settings that
don’t exist in XVT. In these cases, this dialog should attempt to
specify a “best fit” with the XVT portable attributes. The
default_font_id is modified independently of whether an E_FONT
event is generated.

See Also: For a sample customized font selection dialog that uses the portable,
usable method described above, see the Font Mapper (samples/
design/fontmap) sample in the PTK sample set.

15.7. Font/Style Menus
15-33

On some platforms (XVT/XM and XVT/Mac), application users can
set logical font attributes from a Font/Style menu. You can add this
menu to your application by using DEFAULT_FONT_MENU in its XRC
file.

15.7.1. Implementing a Font/Style Menu
From the Font/Style menu, users can select a logical font style,
family, or size. Selecting attributes from the Font/Style menu
generates an E_FONT event. The XVT_FNTID member of the E_FONT
event represents the user’s selection, including family, size, and/or
style, but not native_descriptor.

The E_FONT event simply notifies the application that a Font/Style
menu selection has been made; it does not automatically set check
marks on the menu.

Tip: To get the state of check marks on the Font/Style menus:
Call xvt_menu_get_font_sel.

XVT Portability Toolkit Guide

15-34

Tip: To set the font selection and check marks for the Font/Style menu:
Call xvt_menu_set_font_sel.

15.7.2. Responding to User Font Changes
Applications can use the Font/Style menu or Font Selection dialog
to select the attributes of a logical font. Such a selection causes the
Toolkit to notify the application that changes have been made to the
logical font attributes. When that happens, a normal E_COMMAND
event can’t be passed to your application, because the E_COMMAND
event doesn’t contain enough information to communicate the
logical font selection.

Instead, the application gets an E_FONT event. The XVT_FNTID
member of the E_FONT event is a logical font that reflects the user’s
modifications to the logical font attributes, which could be a change
of style, family, and/or size. (If the E_FONT event was generated by
a Font Selection dialog, the native_descriptor attribute of the
logical font may also be set.)

If your application has been keeping track of the current logical font
with an XVT_FNTID variable, it can process this event by copying the
font_id in the event, using the xvt_font_copy function. If you
want to draw text with the logical font returned in the E_FONT event,
call xvt_dwin_set_font.

When the application wants to tell the user what attributes are
current, by updating the check marks on the Font/Style menu or
changing the default physical font setting in the Font Selection

dialog, it calls xvt_menu_set_font_sel.

After this call is made with a particular font_id as an argument,
subsequent E_FONT events return a logical font with these same
attributes as modified by the user’s menu or dialog choices.

See Also: For more information about E_FONT events, see section 4.5.8 in
Chapter 4, Events.
For more information about what happens when E_FONT events are
generated, see section 15.6 on page 15-30 and section 4.5.8 on page
4-31.
Also see the “DEFAULT_*_MENU Values” section of the
XVT Portability Toolkit Reference.

Fonts and Text

15.8. Working with Text
This section contains information about: 1) how to determine text
width and font metrics for mapped logical fonts, 2) how to show
highlighted text selections, and 3) a method for storing logical font
information in a file.

15.8.1. Text Width and Font Metrics
To determine the width of a text string and metrics for a mapped
logical font, you’ll use these functions:

• xvt_dwin_get_font_metrics
• xvt_dwin_get_text_width
• xvt_font_get_metrics

If the logical font passed in these functions (or the one belonging to
the window) is not mapped, the functions force an automatic
mapping to occur. Metrics are available only for mapped logical
fonts.

Figure 15.3 illustrates font metrics, which consist of the ascent, the
descent, and the leading.
.

baseline

ascent

descent
leading

baseline

ascent

descent
leading

baseline

ascent

descent
leading

baseline

ascent

descent
leading

baseline

ascent

descent
leading

baseline

ascent

descent
leading

baseline

ascent

descent
leading

ascent

descent
leading

ascent

descent
leading

ascent

descent
leading

ascent

descent
leading

ascent

descent
leading
descent
leadingleading
15-35

Figure 15.3. Font metrics

Tip: To find the width of a string in the specified window’s current
logical font:

Call xvt_dwin_get_text_width.
(It returns the width in device pixels.)

Tip: To find out the leading, ascent, and descent of a mapped logical font:
Call xvt_font_get_metrics or
xvt_dwin_get_font_metrics.

baselinebaselinebaselinebaselinebaselinebaselinebaselinebaseline

XVT Portability Toolkit Guide

15-36

15.8.2. Showing Text Selections
Text editing applications often must show a text selection as the user
drags the mouse across a paragraph of text with the button down, as
shown in Figure 15.4.

Figure 15.4. Selected text

To show a selection dynamically as the user drags the mouse, you
must first display the text so the user can see it. You’ll also need a
data structure that contains the location (in pixels) of each character.

Tip: To show text selections within a single line:

1. On an E_MOUSE_DOWN event, round the horizontal and vertical
coordinates of the mouse position to the nearest character
starting position. Save that point in two variables, p and s1. Trap
the mouse with trap_mouse. To remove the caret if there is one,
call xvt_win_set_caret_visible(win, FALSE).

2. On an E_MOUSE_MOVE event (with the mouse down), round the
mouse position to the nearest character starting position, and
store it in q. That character, the one to the right of this point, is
not part of the selection (yet).

3. Using xvt_rect_set, construct a rectangle from p (from step 1) to q

(from step 2). The height of this rectangle is the height of the
line, which your application determines. In simple cases it is the
ascent plus descent plus leading that you obtained with
xvt_font_get_metrics.

4. Set the pen to hollow, the brush to PAT_SOLID and
COLOR_BLACK, and the draw mode to M_XOR. Then call
xvt_dwin_draw_rect to draw the rectangle calculated in step 3.

5. Replace the value of p (first set in step 1) with the value of q.

6. Keep performing steps 2 through 5 as long as E_MOUSE_MOVE
events occur. On the next E_MOUSE_UP, round off the mouse
point as before and store it in the variable s2. Call
xvt_win_release_pointer. At this point the selection is from s1 to s2,
and it is already highlighted.

Fonts and Text

7. If s1 equals s2, the user did not drag the mouse, but merely
clicked it. No selection has been shown because, even if an
E_MOUSE_MOVE occurred, the rectangle drawn in step 4 was
empty. This means that the user merely wanted to set the
insertion point, so call xvt_caret_set_pos to position a blinking
caret.

Note: To allow the user to drag from line to line, you must modify the
algorithm shown above slightly.

Also, you’ll usually want to allow a double-click (E_MOUSE_DBL)
to select a complete word. Since the E_MOUSE_DBL follows
E_MOUSE_DOWN and E_MOUSE_UP events, the algorithm given is
executed prior to receiving the E_MOUSE_DBL. Clear the selection
by drawing the same rectangle with a mode of M_XOR, then show the
appropriate word as being selected.

You might also want to implement dragging after double-clicking
(with the button still down) to allow a range of words to be selected.

See Also: For more information about mouse events, see the discussion of
dragging in section 4.5.13 on page 4-48.

15.8.3. Transferring Logical Font Information
The XVT Portability Toolkit provides two functions that can
serialize a logical font for writing to a file and deserialize it when
reading from a file. If an application wants to preserve a permanent
15-37

copy of a logical font, it must maintain the following font attributes:
• family
• size
• style
• native_descriptor

Tip: To serialize logical font attributes:

Call xvt_font_serialize.

This function serializes the logical font into a stream of bytes in a
buffer.

Tip: To deserialize logical font attributes:

Call xvt_font_deserialize.

This function sets the logical font to correspond to the one saved by
xvt_font_serialize.

XVT Portability Toolkit Guide

15-38

Clipboard

16
CLIPBOARD

This chapter discusses the following topics related to using the
clipboard:

• Clipboard formats
• Putting data on the clipboard
• Getting data off the clipboard
• Handling the Cut, Copy, and Paste commands

16.1. Clipboard Formats
XVT supports two predefined clipboard formats, for text and
pictures, as well as an unlimited number of application-defined
16-1

formats. A value of type CB_FORMAT indicates the format:
typedef enum { /* standard clipboard format */

CB_TEXT, /* ASCII text */
CB_PICT, /* encapsulated picture */
CB_APPL /* app's type (name required) */

} CB_FORMAT;

The following sections describe the three formats.

16.1.1. CB_TEXT
The CB_TEXT format consists of a sequence of ASCII characters,
possibly broken into lines that are terminated with an end-of-line
sequence whose value is in the constant EOL_SEQ.

In all cases, the sequence is either a plain carriage return (\r), a plain
line feed (\n), or a carriage return followed by a line feed (\r\n). The
entire sequence is not terminated with a NULL byte. The only way to
determine its end is to refer to the size parameter, which always
accompanies the data itself.

XVT Portability Toolkit Guide

16-2

When breaking CB_TEXT data into lines (such as after calling
xvt_cb_get_data), you can avoid having to use EOL_SEQ directly
by calling xvt_str_find_eol. However, when building CB_TEXT data,
you must concatenate the contents of EOL_SEQ onto each line (with
strcat, for example). The last line is not required to end with an end-
of-line sequence.

16.1.2. CB_PICT
The CB_PICT format consists of a linear sequence of bytes that
represents an encapsulated picture. The internals of this format are
undefined, but you can safely pass the bytes from one address space
to another (unlike a non-linearized PICTURE):

• If you already have an object of type PICTURE (returned by
xvt_dwin_close_pict or xvt_pict_create), you can put it onto the
clipboard directly with xvt_cb_put_data—it’s not necessary to
linearize it first.

• If you get a linearized picture off the clipboard with
xvt_cb_get_data, you can turn it into a PICTURE object
with xvt_pict_create.

Note: You should not access or delete the PICTURE after passing it into
xvt_cb_put_data, since the clipboard “owns” the PICTURE.

16.1.3. CB_APPL
The CB_APPL format lets you put your own data structures onto the

clipboard, presumably for use by other applications that know about
those data structures. Each format has a name, which consists of 1 to
4 alphabetic and/or numeric characters. When referring to a CB_APPL
format, you must also specify the name.

You can put unlimited CB_APPL formats onto the clipboard (along
with CB_TEXT and CB_PICT formats, if you like) as long as they have
different names.

The only requirement placed on your CB_APPL data structures is that
they must be address-space independent, since they can be passed
from one application to another. This means that they must not
contain pointers, because those pointers would be invalid to the
receiving application.

Tip: Another way to think about whether a data structure is valid is to ask
yourself this question: if the data structure were written to a file,
could another instance of your application read it back in and
properly interpret it later?

Clipboard

16.2. Putting Data On the Clipboard
Tip: To put CB_TEXT or CB_APPL data on the clipboard:

1. Allocate clipboard memory with xvt_cb_alloc_data,
which returns a pointer, and move your data there.
(Note: This is required. It’s not enough to have allocated
memory with malloc, or even with xvt_gmem_alloc.
For CB_PICT data, all you need is a PICTURE object; you
don’t have to call xvt_cb_alloc_data in this case.)

2. Open the clipboard with xvt_cb_open.

3. Put your data onto the clipboard with xvt_cb_put_data.

4. Close the clipboard with xvt_cb_close.

5. If you called xvt_cb_alloc_data, free the clipboard memory with
xvt_cb_free_data.

Note: xvt_cb_put_data knows implicitly about the memory allocated with
xvt_cb_alloc_data, so you do not pass it the pointer that xvt_cb_alloc_data
returned. The correct order in which to call the functions is actually
this: xvt_cb_open, xvt_cb_alloc_data, xvt_cb_put_data, xvt_cb_free_data,
xvt_cb_close.

Example: The following code shows the steps for putting text onto the
clipboard.

eol_len = strlen(EOL_SEQ);
16-3

size = 0;
for (i = 0; text[i] != NULL; i++)

size += strlen(text[i]) + eol_len;
if ((p = xvt_cb_alloc_data(size)) == NULL) {

xvt_dm_post_error("Cannot allocate clipboard memory.");
return;

}
for (i = 0; text[i] != NULL; i++) {

for (j = 0; text[i][j] != '\0'; j++)
*p++ = text[i][j];

for (j = 0; EOL_SEQ[j] != '\0'; j++)
*p++ = EOL_SEQ[j];

}
if (!xvt_cb_put_data(CB_TEXT, NULL, size, (PICTURE)NULL))

xvt_dm_post_error("Error putting text onto clipboard.");
xvt_cb_free_data();

Implementation Note: On XVT/Win32, you can put objects larger than 64K onto the
clipboard, although your XVT program cannot retrieve them.
However, non-XVT applications might be able to retrieve them.

XVT Portability Toolkit Guide

16-4

16.3. Getting Data Off the Clipboard
Tip: To get data off the clipboard:

1. Determine if the format you desire is available by calling
xvt_cb_has_format (perhaps several times for different formats).

2. If a usable format is present, open the clipboard with xvt_cb_open
and retrieve a pointer to and the size of the data with
xvt_cb_get_data.

3. If the data is CB_TEXT or CB_APPL, immediately move it into an
area of memory that you have allocated (perhaps with malloc or
xvt_gmem_alloc) because the data on the clipboard that the pointer
addresses might disappear when you close the clipboard.

4. If the data is CB_PICT, capture it by calling xvt_pict_create.

5. As soon as possible, close the clipboard with xvt_cb_close to
allow other applications to access it.

Clipboard

Example: The following code segment shows the operations used in getting
data off the clipboard. Note that the type of format is checked first.

if (!xvt_cb_open(FALSE)) {
xvt_dm_post_error("Error opening clipboard.");
return;

}
free_data();
xvt_dwin_invalidate_rect(win, NULL);
data.fmt = format.fmt;
if ((p = xvt_cb_get_data(data.fmt, format.name,

&data.size)) == NULL) {
if (user_initiated)

xvt_dm_post_note("No data in chosen format.");
}
else

switch (data.fmt) {
case CB_TEXT:
case CB_APPL:

if (data.size > SZ_TEXT) {
xvt_dm_post_error
("More than %d bytes of data on clipboard.",
SZ_TEXT);
break;

}
if ((data.ptr = xvt_mem_alloc((unsigned)data.size))
== NULL) {

xvt_dm_post_error("Cannot allocate memory.");
break;

}
memcpy(data.ptr, p, (int)data.size);
data.valid = TRUE;
break;

case CB_PICT:
if ((data.pict = xvt_pict_create(p, data.size,
16-5

&data.frame)) == NULL_WIN) {
xvt_dm_post_error("Error making picture.");
break;

}
data.valid = TRUE;

}
if (!xvt_cb_close())

xvt_dm_post_error("Error closing clipboard.");

16.4. Handling Cut, Copy, and Paste Commands
If possible, every application should implement the Cut, Copy, and
Paste items on the standard XVT Edit menu:
Cut and Copy

These are the same as far as the clipboard is concerned; the only
difference between them is that Copy simply puts data onto the
clipboard, whereas Cut also deletes it from the document.
Enable Cut and Copy (with xvt_menu_set_item_enabled)
only if the user has selected something that can be put onto the
clipboard.

XVT Portability Toolkit Guide

16-6

Paste
This command gets data from the clipboard and inserts it into
the document. Enable Paste only if the clipboard contains data
that can be inserted (determine this by calling xvt_cb_has_format,
usually several times for different formats).

Note: You should enable or disable these menu items every time one of
your document windows is activated (E_FOCUS event with active set
to TRUE), since the clipboard may have changed while another
application ran.

Putting Data On the Clipboard

When putting data on the clipboard, you should try to cast the data
into both CB_TEXT and CB_PICT formats if possible, or one of them
at least. You should also put the data into one or more of your own
CB_APPL formats.

Your application should allow the user to paste in CB_TEXT or
CB_PICT data, if at all reasonable. The Paste command should first
look for a CB_APPL format, then CB_PICT, and then CB_TEXT. The
idea is to pass as much structure as possible through the clipboard.

Getting Data Off the Clipboard

When getting data off the clipboard, you generally call xvt_cb_get_data
just once because you have already determined what format is
available with xvt_cb_has_format. When putting data onto the clipboard
you usually call xvt_cb_put_data several times, once for each format to

which you can convert the data.

Files

17
FILES

This chapter discusses how to handle files for XVT applications.
It covers the following topics:

• Portably referring to filenames, directories, and file types
with XVT’s FILE_SPEC data type

• Getting and setting file attributes
• Using standard functions for file input and output
• Processing selected files
• Standard file dialogs

You may need to change the way you process file and pathnames.
Since file and pathnames can contain multibyte characters, they
must be treated like other multibyte strings. All PTK functions and
17-1

data types that accept file or pathname strings are multibyte capable.

Any application that needs to use wide characters for the purposes
of internationalization (i.e., a multibyte-aware application) should
use the XVT string processing functions. Also, do not use the XVT
R3 function xvt_fsprintf and others like it. For more details, refer to
section 19.3.3.1 on page 19-39.

XVT Portability Toolkit Guide

17-2

17.1. Portable Filenames, Directories, and Types

17.1.1. SZ_FNAME Constant
The symbol SZ_FNAME defines the length of filenames supported
(include '/0').

17.1.2. SZ_LEAFNAME Constant
The XVT constant SZ_LEAFNAME defines the maximum byte length
of a single token in a file pathname (a directory name or a filename).
This maximum value takes into account any file extensions
(including the periods ‘.') but excludes pathname delimiters (‘/’, ‘\’ or
‘:’). The value of this constant is platform-specific and may depend
on the character code set used. It is convenient to use this constant
with the XVT function xvt_fsys_parse_pathname.

Note: By comparison, the constant SZ_FNAME is defined as the maximum
byte length of a full pathname for a particular file system.

17.1.3. FILE_SPEC Data Type
The operating systems underneath the various XVT
implementations handle file and directory names quite differently.
As a result, XVT must provide an abstract way to refer to files,
directories, and file types. It does this with the data type FILE_SPEC:

#define SZ_FNAME ...
/* max len of name (excl. NULL) */
typedef struct {
DIRECTORY dir; /* directory */
char type[6]; /* file type or extension */
char name[SZ_FNAME + 1];

/* name (or partial path) */
char creator[6]; /* Mac creator */

} FILE_SPEC;

Files

17.1.4. DIRECTORYs
The internals of a DIRECTORY are hidden from XVT applications.
Consequently, you must not assume that a directory specification is
even a character string. Whenever the user enters a file specification
using the standard file dialogs, the application also receives a
DIRECTORY. Hence, XVT handles most operations on directories in
an abstract way, and a portable application does not need to know
what a DIRECTORY actually is.

Several XVT functions let you portably manipulate a DIRECTORY.

Tip: To change the default DIRECTORY to the DIRECTORY that was
current when the application started:

Call xvt_fsys_set_dir_startup.

Tip: To get the present current directory:
Call xvt_fsys_get_dir.

Tip: To set the directory to a specific DIRECTORY:
Call xvt_fsys_set_dir.

Tip: To save the current DIRECTORY:
Call xvt_fsys_save_dir.
17-3

Tip: To restore the current DIRECTORY:
Call xvt_fsys_restore_dir.

Tip: To convert an abstract DIRECTORY to a local, non-portable string:
Call xvt_fsys_convert_dir_to_str.

Tip: To convert a local, non-portable string to an abstract DIRECTORY:
Call xvt_fsys_convert_str_to_dir.

Tip: xvt_fsys_convert_str_to_dir is particularly useful when you prompt the
user for a directory path using a method other than XVT’s standard
file dialogs, or when the pathname is in a resource file as a string.

Tip: To construct a native (single-byte or multibyte) pathname string
from the pathname pieces:

Call xvt_fsys_build_pathname.

XVT Portability Toolkit Guide

17-4

Tip: To parse a (single-byte or multibyte) pathname string, breaking it
into pathname tokens (volume name, directory path, leaf root name,
leaf extension, and leaf version):

Call xvt_fsys_parse_pathname.

See Also: For more information about processing strings, including filenames
and pathnames, in a multibyte-aware application, see section 19.2.4
on page 19-24.

Example: This example shows how you might use SZ_LEAFNAME with
xvt_fsys_parse_pathname to parse a file pathname:

static void parse_pathname(char* buf)
{

char dir[SZ_FNAME];
char ext[SZ_LEAFNAME];
char file[SZ_LEAFNAME];
char ver[SZ_LEAFNAME];
char vol[SZ_LEAFNAME];
char fullname[SZ_FNAME]; /* reconstructed

pathname */

xvt_dm_post_note("Original pathname is = \"%s\"",
buf);

if (!xvt_fsys_parse_pathname(buf, vol, dir,
file, ext, ver))

xvt_dm_post_note("Failed to parse pathname");
else {

if (xvt_fsys_build_pathname(fullname, vol,
dir, file, ext, ver))

xvt_dm_post_note(
"Reconstructed pathname is \"%s\"",
fullname);

else

xvt_dm_post_note(

"Fail to rebuild pathname");
}

}

17.1.5. File Types
A file type is a three- or four-letter string by which the application
refers to files containing its documents. On some XVT platforms,
when the user is at the “desktop” level, he or she can click on such
a file, and the corresponding application is started.

Tip: To set the file type:

Call xvt_fsys_set_file_attr
(...,XVT_FILE_ATTR_TYPESTR,...)

For portability, the type string should be in a resource file, not in the
program itself.

Files

Implementation Note: On XVT/Mac, this function also sets the creator:
xvt_fsys_set_file_attr(...,XVT_FILE_ATTR_CREATORSTR,...)
On other platforms, this argument is ignored.

17.2. Getting and Setting File Attributes
XVT abstract files encapsulated by the FILE_SPEC data structure
have attributes that you can get and set with the XVT functions
xvt_fsys_get_file_attr and xvt_fsys_set_file_attr.
You can get all of the following file attributes, but can set only the
last two:

Attribute: Description: Access:

XVT_FILE_ATTR_EXIST File existence Get
XVT_FILE_ATTR_READ Can file be read Get
XVT_FILE_ATTR_WRITE Can file be written Get
XVT_FILE_ATTR_EXECUTE Can file be executed Get
XVT_FILE_ATTR_DIRECTORY Is file a directory Get
XVT_FILE_ATTR_NUMLINCKS Number of links to file Get
XVT_FILE_ATTR_SIZE Size of file in bytes Get
XVT_FILE_ATTR_ATIME Last time accessed file Get
XVT_FILE_ATTR_MTIME Last time modified file Get
XVT_FILE_ATTR_CTIME Creation time of file Get
XVT_FILE_ATTR_DIRSTR Directory name of file Get
XVT_FILE_ATTR_FILESTR Filename Get
17-5

XVT_FILE_ATTR_CREATORSTR Creator Get/Set
XVT_FILE_ATTR_TYPESTR File type Get/Set

XVT Portability Toolkit Guide

17-6

17.3. File Input and Output Using Standard Functions
You can open, create, read, write, and perform other operations on
files using standard C functions—XVT doesn’t have to provide
specific toolkit-independent support for these. However, XVT
does provide portable functions for these operations:

• Obtaining a filename from the user (so that the file can
be opened)

• Specifying directories and file types in an abstract,
portable way

• Handling related operations

If possible, you should use these standard I/O library functions,
because they are supported by all compilers that XVT works with:

clearerr fputs
creat fread
fclose freopen
feof fseek
ferror ftell
fflush fwrite
fgetc open (with 2 arguments only)
fgets putc
fileno rewind
fopen setbuf
fprintf sprintf
fputc ungetc

Implementation Note: Because printf is not supported natively on all XVT-supported
platforms, you should avoid using it.

1
7.4. Processing Selected Files
It’s possible for the application to be started when the user selects
one or more documents. XVT provides functions to get the names
of these files.

Tip: To find out how many files were selected, and their names:

1. Call xvt_app_file_count.

This function also tells you whether the user has selected the
files for printing, rather than for opening (it might return zero).

2. Call xvt_app_get_file repeatedly, until it returns NULL.

3. After processing a file, call xvt_app_set_file_processed
to indicate that you’re done with it.

Files

Tip: To get a list of all files and/or directories in the current directory:

Call xvt_fsys_list_files.

This function also allows you to restrict the list to the files whose
names match a wildcard pattern.

17.5. Standard File Dialogs
Each toolkit on which XVT runs has standard file dialogs that
applications use to get filenames from the user. Figure 17.1 shows
an example of the standard Open dialog, which gets the name of a
file to open. Figure 17.2 shows an example of a standard Save
dialog.
17-7

Figure 17.1. Open dialog

Figure 17.2. Save dialog

XVT Portability Toolkit Guide

17-8

Tip: To display the standard Open dialog:

Call xvt_dm_post_file_open.

The files shown in the list box are of the type specified in the
FILE_SPEC argument. On a successful return, the DIRECTORY and
filename members of FILE_SPEC are set to the user’s selection.

Tip: To display the standard Save dialog:

Call xvt_dm_post_file_save.

The initial name for the edit box is supplied in the FILE_SPEC
argument, and that argument contains the user’s response upon a
successful return.

Tip: To display the standard Directory dialog:

Call xvt_dm_post_dir_sel

A list of directories will be displayed for selection. On a successful
return, the DIRECTORY member of FILE_SPEC is set to the selected
directory.

After getting a FILE_SPEC from any of the functions, open the file in
the normal way, for example with fopen. Upon creating a new file,
since fopen doesn’t handle file types, you must set its type with a call
to this function:

xvt_fsys_set_file_attr
(...,XVT_FILE_ATTR_TYPESTR,...)

Implementation Note: On XVT/Mac, the following function sets the file’s creator, which

should be a four-character name unique to the application:

xvt_fsys_set_file_attr
(...,XVT_FILE_ATTR_CREATORSTR,...)

Printing

18
PRINTING

This chapter contains information about the following
printing topics:

• Basic printing steps
• The printing context (print records and print windows)
• Printing to a print window
• Restrictions on printing
• The standard page setup dialog
• Aborting printing
• Initializing and terminating printing
• Working with printer drivers

18.1.
18-1

Basic Printing Steps
The basic XVT model for a printing cycle involves the
following steps:

• Create a printing context
• Create a print thread
• Create a print window
• Iterate on print pages
• Iterate on print bands within the print page
• Call XVT drawing functions
• Destroy print window
• Destroy printing context

See Also: For more information about printing, see the xvt_print_* functions in
the XVT Portability Toolkit Reference.

XVT Portability Toolkit Guide

18-2

18.2. Print Records and Print Windows
XVT uses objects of type PRINT_RCD (print record) to keep track of
the printing context, including the page setup. The actual printing is
done into a “print window” (a WINDOW of type W_PRINT) similar to
drawing into a normal screen window.

18.2.1. Print Records
Most printing functions require information about the printer. This
contextual information is provided in a print record. This section
gives information on creating, using, and destroying a default
print record.

18.2.1.1. PRINT_RCD Data Type
XVT does not expose the actual declaration of a print record.
Instead, XVT supplies a fictitious declaration so that applications
can declare pointers to a PRINT_RCD:

typedef struct {
...

} PRINT_RCD;

Tip: To create a default PRINT_RCD:
Call xvt_print_create.

Tip: To destroy a print record you no longer need:
Call xvt_print_destroy.
18.2.1.2. Using Print Records
You should save a document’s print record for at least the duration
of a print cycle.You may opt to save it longer, since it can contain
page setup information that the user has set and will expect your
application to remember.

The call to xvt_print_create returns the size of the print record, so that
it can be written to a file. When the print record is read back in, you
must make sure that it is valid for the current chosen printer.

Tip: To determine if the print record is valid for the current printer:
Call xvt_print_is_valid.

Tip: When you design the data structures for saving your documents,
allow room for the print record, too.

Printing

18.2.2. Print Windows
Printing is an operation very similar to drawing into normal screen
windows. This section provides information on creating, using,
and destroying a print window.

Tip: To create a print window:

1. Call xvt_print_create to obtain a print record.

2. Pass this print record to xvt_print_create_win. You must supply the
name of the document to be printed so the print spooler or
network can identify the job.

Tip: To use the print window:
Use the appropriate drawing tools and drawing functions, just as
if you were drawing in a normal window. The drawing isn’t
displayed on the screen, but is instead printed on paper.

Tip: To destroy the print window:

1. When the print job is completed, destroy the print window by
calling xvt_vobj_destroy, passing the print window as its
parameter.

2. After the print window has been destroyed, you can optionally
destroy the print record by calling xvt_print_destroy.
18-3

18.3. Printing to a Print Window
This section discusses print pages, print bands, and portable print
functions.

18.3.1. Print Pages
In XVT printing, a print job is divided into pages.

Tip: To start a new page of printing:
Call xvt_print_open_page with a valid print record. If this function
returns FALSE, terminate your print job.

Tip: To end a page of printing:
Call xvt_print_close_page.

Your application determines how many pages to print.

XVT Portability Toolkit Guide

18-4

18.3.2. Print Bands
Each page of a print job is divided into rectangular bands. On most
platforms there is only one band per page. However, on platforms in
which native memory limitations occur, there are multiple bands.
The number of bands is in part determined by the resolution of the
printer. Your application is responsible for drawing into each of
these bands to fill out the page.

Tip: To print a page of print bands:

1. Call xvt_print_get_next_band repeatedly in a while loop until it
returns NULL. For each band, print at least the portion of the
page that lies within the rectangle returned by
xvt_print_get_next_band. Any drawing outside of the rectangle will
be clipped.

2. Use xvt_dwin_is_update_needed to determine if a particular
rectangle of interest intersects the print band.

18.3.3. Writing a Portable Printing Function
On some XVT platforms, printing is performed in a separate thread
of execution. To ensure portability, the print job should be
encapsulated in a single function. This function begins with a
call to xvt_print_create_win and ends with a call to xvt_vobj_destroy.

You must define a function similar to this:
BOOLEAN XVT_CALLCONV1 print_document(long data)
{

if ((print_win = xvt_print_create_win
(print_rcd, “Doc Title”) == NULL_WIN)

return FALSE;
...
xvt_vobj_destroy(print_win);

}

The function must return TRUE if the job succeeds and FALSE
otherwise. The function should do nothing other than printing and
drawing operations.

Note: To ensure portability, use XVT_CALLCONV1 in all prototypes and
headers for XVT callback functions, including print functions.

Printing

18.3.3.1. Invoking Your Printing Indirectly
To execute your printing function, call xvt_print_start_thread. Do not
call your printing function directly. XVT will call it for you, as
shown in this example:

case M_FILE_PRINT:
if (!xvt_print_start_thread(print_document,

PTR_LONG(&data)))
xvt_dm_post_error("printing failed");

break;

The long argument of xvt_print_start_thread is passed to the printing
function. You can use it for any purpose, but usually it passes data
to the print function. The value returned by your print function
becomes the value returned by xvt_print_start_thread.

Some XVT implementations return immediately from
xvt_print_start_thread, while others do not return until
your printing function returns. You must protect your data from
unwanted cross-thread corruption.

Caution: To be safe, always return immediately from the window event
handler that called xvt_print_start_thread. Even if you know that your
print function will execute in a separate thread, do not attempt
concurrent processing during printing.

See Also: For more information about xvt_print_start_thread, refer to its
description in the XVT Portability Toolkit Reference.
18-5

18.3.3.2. Print Thread Implementations
On platforms that do not support thread based printing, the
xvt_print_start_thread function simply calls your print
function and is implemented like this:
BOOLEAN xvt_print_start_thread(XVT_PRINT_FUNCTION fcn,

long data)
{

return(fcn(data));
}

Caution: You cannot test whether you have successfully refrained from
calling the prohibited functions on non-threading platforms.
On the other hand, calling prohibited functions won’t cause a
problem except on platforms that support threading.

18.3.4. Calls You Can Make From a Print Function
You can call the following XVT functions from a print function:

xvt_cb_*

XVT Portability Toolkit Guide

18-6

xvt_debug_*
xvt_dwin_* (except xvt_dwin_invalidate_rect,

xvt_dwin_scroll_rect, and xvt_dwin_update)
xvt_errid_*
xvt_errmsg_*
xvt_font_*
xvt_fsys_*
xvt_gmem_*
xvt_image_*
xvt_iostr_*
xvt_mem_*
xvt_palet_*
xvt_pict_*
xvt_pmap_*
xvt_print_* (except xvt_print_start_thread,

 xvt_print_open and xvt_print_close)
xvt_rect_*
xvt_res_*
xvt_scr_beep
xvt_scr_busy_cursor
xvt_slist_*
xvt_str_*
xvt_vobj_destroy (for print window only)

Caution: A print window does not receive update events, and you must not
call xvt_dwin_invalidate_rect or xvt_dwin_update.

18.3.5. Sample Print Function

The following function shows the basic procedure to print a
document. Remember, a print function must be called by
xvt_print_start_thread, as shown earlier in this section.
BOOLEAN XVT_CALLCONV1 print_document(long pages)

{
int page;
WINDOW print_win;
RCT* rct_band;

if (print_rcd == NULL ||
 (print_win = xvt_print_create_win(print_rcd,

"Document")) == NULL_WIN)
return FALSE; /* user cancelled--no error */

for (page = 1; page <= (int)pages; page++) {
if (!xvt_print_open_page(print_rcd))

break;
while ((rct_band = xvt_print_get_next_band()) !=

Printing

NULL)
app_draw_page(print_win,rct_band,page);

if (!xvt_print_close_page(print_rcd))
break;

}

xvt_vobj_destroy(print_win);
return TRUE;

}

18.4. Printing Restrictions
Printing can occur in a separate thread, and this thread can share data
with the main thread. To protect data from corruption, XVT imposes
strict restrictions on what you are allowed to do in a printing
function:

• In general, do not do anything that can generate an event;
in particular, avoid E_UPDATE events

• Do not create or destroy any window, dialog, or control
(except, of course, for the print window)

• Do not move a window, bring a window to the front, or
perform a similar operation

• Draw only what goes on the printed page
18-7

XVT Portability Toolkit Guide

18-8

18.5. Printer Page Setup
This section discusses modifying the print context record and
querying the printer attributes.

18.5.1. Page Setup Dialog
You can display a standard dialog to let the user adjust the page
setup and store the settings in the print record. Figure 18.1 shows
a typical page setup dialog.

Figure 18.1. Standard Page Setup dialog on MS-Windows

Tip: To display a standard page setup dialog:
Call xvt_dm_post_page_setup.
See Also: For more information about page setup dialogs, see the description
of xvt_dm_post_page_setup in the XVT Portability Toolkit Reference.

18.5.2. Print Metrics
Tip: To find the total size of a page and the printer’s resolution:

Call xvt_app_escape(XVT_ESC_GET_PRINTER_INFO...)
or xvt_vobj_get_attr(ATTR_PRINTER_*).

You must do this before printing because, in general, these print
metrics differ from those for the screen.

Printing

The following code demonstrates querying printer metrics:
METRICS pmetrics;

#if (XVTWS == MACWS) || (XVTWS == NTWS)
{

long height, width, vres, hres;

xvt_app_escape(XVT_ESC_GET_PRINTER_INFO,
print_rcd, &height, &width, &vres, &hres);

pmetrics.width = (short)width;
pmetrics.height = (short)height;
pmetrics.hres = (short)hres;
pmetrics.vres = (short)vres;

}
#else

pmetrics.width = (short)xvt_vobj_get_attr(NULL_WIN,
ATTR_PRINTER_WIDTH);

pmetrics.height = (short)xvt_vobj_get_attr(NULL_WIN,
ATTR_PRINTER_HEIGHT);

pmetrics.hres = (short)xvt_vobj_get_attr(NULL_WIN,
ATTR_PRINTER_HRES);

pmetrics.vres = (short)xvt_vobj_get_attr(NULL_WIN,
ATTR_PRINTER_VRES);

#endif

See Also: For details on possible platform-specific print functionality, see the
platform-specific books.

18.6. Aborting a Print Job
18-9

On most platforms, while a print job is underway, XVT displays a
dialog box that lets the user abort the job. On XVT/XM, however,
the application does not communicate with the printer. Instead, these
platforms create a PostScript file that the application is responsible
for sending to the printer. As a result, no dialog box appears.

On other platforms, if the user aborts the print job, the next call to
xvt_print_open_page returns FALSE. When your application receives the
FALSE return, you should finish the print job with a call to
xvt_vobj_destroy.

XVT Portability Toolkit Guide

18-10

18.7. Initiating and Terminating Printing
Before calling any printing functions, you must have previously
called xvt_print_open. However, XVT’s printing functions
xvt_print_create and xvt_print_create_win make this call automatically.
XVT provides these functions to enable printer attributes to be
queried.

A print job is always bracketed between two calls: xvt_print_open,
which initializes the printer for output, and xvt_print_close, which
terminates printer output.

When you call xvt_print_open, call xvt_print_close as soon
as you’re done with print functions. Call both functions each time
the application needs to print, or allow the xvt_print_create_win and
xvt_vobj_destroy functions to do it for you.

Tip: Do not call xvt_print_open only at application initialization and
xvt_print_close only at termination, since this can prevent other
applications from printing.

18.8. Printer Driver Issues
XVT attempts to take the most general approach to working with
printer drivers (on platforms which support them). XVT implements
its printing API to the printing specifications of the operating system
vendors. Printing with XVT is not guaranteed to work with printer
drivers that do not meet these specifications.
Sometimes, printer drivers fail to work properly. Examples of
problems that printer drivers may cause include the improper
reporting of printer attributes, the improper sizing of page margins,
the invalid setting of requested fonts, the incorrect setting of line pen
styles, and the premature termination of printing by network
printers. XVT attempts to work around such problems known to
exist in commonly used drivers.

In writing your application, you should be aware that such problems
exist. You may need to make adjustments in your drawing for the
drivers you require.

Localization

19
MULTIBYTE CHARACTER SETS
AND LOCALIZATION

This chapter introduces the terminology, concepts, and methods
involved in developing XVT applications that support locales and
international languages. The XVT Portability Toolkit (PTK)
application programming interface (API) and XVT resource files are
internationalized and support the use of multibyte character
codesets.

XVT-Design can generate its standard application code and
resources in internationalized form and supports easy localization
of developer-written code.

19.1.

γ

19-1

See Also: You should refer to the XVT Platform-Specific Books and to your
native platform documentation for more information on setting
locale data for your platforms.

Around the World with XVT

19.1.1. About Internationalization and Localization
This section highlights some of the general issues involved in
adapting applications for international language and locale support.

19.1.1.1. Why and When to Adapt an Application
Adapting an application for a specific locale, or localization,
involves several issues. You must evaluate the differences in locales
to determine which, if any, locale categories are relevant to the
application. For example, written language (and character codesets)
may be a minor issue to some localization efforts. An application

XVT Portability Toolkit Guide

19-2

developed for American users will have only slight differences for
British citizens (date formatting, monetary formatting and minor
variations in spelling). In other cases, all locale categories may be
affected by a localization effort. An Asian language-based
application will have significantly different needs than the same
English-based application including such categories as character
codesets, layout, collation, and monetary formatting. Localization,
and to what degree localization is performed, are strongly dependent
on the target locales of the application.

Several important tasks are involved in the localization of an
application. Often, the most daunting task is the translation of string
literals from English (or another original language; this guide
assumes that English is the base language) to the local language.
Often this task is outside the scope of the application developer and
will require you to obtain specialized expertise. Secondary to this
task is proper processing of those strings whether that be sorting,
concatenating, parsing, or simply formatting strings for screen
layout. Other related tasks include creating locale-specific resource
files and setting the environment configuration appropriate to the
locale.

Internationalization (I18N) involves modifying application code
and resource files so they can be easily localized. Ideally, the result
of I18N is that localization efforts can be accomplished without
changing application source code and without requiring code
recompilation. Applications that target a significant variety of
locales are candidates for internationalization. In deciding whether
to internationalize your application or not, you must evaluate the

pros and cons that arise from supporting several versions of an
application, each for a specific locale, or even a single version which
contains code for multiple locales. Also, it is important to consider
which locales you may need to support in the future.

There are several things you need to consider before you
internationalize an application. In addition to handling single-byte
character strings, your application code must be able to process
multibyte or wide character strings depending upon the locales you
must support. This includes general processing for collation,
parsing, formatting and layout. String literals and other locale-
sensitive items should be made external to the application source
code so they can be translated and substituted as needed.

See Also: For a specific description of how to internationalize and localize
your XVT applications, see the next section, section 19.1.1.2.

Localization

19.1.1.2. How to Adapt an Application
This section describes an overall methodology for writing XVT
applications that support locales and international languages. Then
the section provides specific steps you can follow to implement the
methodology.

Additional details are provided for customers who have access to
XVT-Design. Paragraphs formatted like this paragraph introduce
XVT-Design-specific information.

Remember to debug your application prior to undertaking the
localization effort. Resolving localization issues is much easier if
your application is working well to begin with. Although this seems
to add extra steps to your development process, it actually reduces
the total amount of effort by cleanly separating coding problems. As
you gain experience in adapting applications, you may begin to find
it easier to write localized XVT applications from scratch.

See Also: Applications can be localized to some languages without using wide
(multibyte) characters. However, localizing to other languages, such
as Japanese, will require “special characters.” For more information,
refer to sections 19.1.2.1 on page 19-14 and 19.3.3.4 on page 19-41.

Internationalization

γ

19-3

Internationalization requires disassociating any locale-sensitive
information from your application and encapsulating it in external
files such as resource files. Any locale-sensitive processing
operations also must be encapsulated and handled in a general
manner. Some of the factors you must consider when
internationalizing include the following:

• String literals
• Special strings and data that require locale-specific

formatting or parsing (i.e., sprintf, textual representation of
numbers, date/time formats, proper word- and line-wrap)

• Dialog and window layout
• Graphics (icons, bitmaps)
• Colors
• Font references
• Keyboard modifiers, mnemonics and accelerators
• Help source files

XVT Portability Toolkit Guide

19-4

If you are using character codesets that use wide character or
multibyte encoding schemes, your application code for
manipulation of strings must be modified to handle these character
codesets. The following string operations are candidates for
modification or replacement:

• Collation
• Parsing
• Incrementing or decrementing character pointers
• Character or string comparison
• Handling upper and lower case (some languages are

indifferent)
• Conversion between character codesets

Appropriate text and graphic object positions and dimension data
should also be removed from the application and be placed instead
in external resource files.

For XVT-Design Users Only

If you are an XVT-Design user, refer to the following list of general
steps to internationalize your XVT application. Most of the
information in these steps is described in greater detail in later
sections of this chapter or in the XVT Platform-Specific Books.
Another source of information is the chapter on Internationalization
and Localization in the XVT-Design Manual.

γ

1. In the Application Attributes dialog, select Internationalization.
This selection causes SPCL:I18N_Header, SPCL:I18N_XRC, and
SPCL:I18N_Main tags to be created (as described below), as well
as inserting special localization macros.

2. In the SPCL:I18N_XRC tag in the ACE, you now see code similar
to the following:

#ifdef XVT_LOCALIZABLE
#include “strres.h”
#endif

The XRC include file strres.h contains locale-specific strings;
it is generated in step 1 (on page 19-7 below) when you run the
strscan utility program.

3. In the SPCL:I18N_Header tag in the ACE, you now see code
similar to the following:

Localization

#ifdef XVT_LOCALIZABLE
#include “strdef.h”
#endif

The include file strdef.h will be generated in step 1 (on page
19-7 below). strdef.h contains #defines for resource IDs used in
strres.h.

4. Still in the ACE, replace string literals in your code with calls to
the LOCAL_C_STR macro (for details about this macro, see
section 19.3.2.2 on page 19-36). Use the XVT-Design Find
command to help you locate string literals.

5. Using the SPCL:User_Header tag in the ACE, add the following
code:

#define XVT_LOCALIZABLE

Alternatively, you may modify your makefile or makefile
templates to define this flag.

6. Use the XVT-Design Generate Application command to generate
all files.

Now, working outside of XVT Development Solution for C and its
visual design tool, XVT-Design, complete these two additional
steps:

7. In your external files (those not generated by XVT-Design),
replace string literals with calls to the LOCAL_C_STR macro.
19-5

Once you have completed the steps presented in the preceding
list (steps 1 through 7), your C application is modified to use the
LOCAL_C_STR macro and your application is “internationalized.”
In other words, your application’s displayable strings have been
processed in a manner that allows them to be easily “localized,”
that is to say, modified for a specific locale.

This marks the end of XVT-Design-specific information about
internationalization.γ

XVT Portability Toolkit Guide

19-6

Localization

Localization is quite straightforward once your application has been
internationalized. The biggest part of localization is placing string
literals in an external file that can be modified as required by specific
locales.

Your application must be localized for each unique environment in
which it will operate. The steps vary slightly depending on the
application and the selected locales, but generally speaking, plan on
the following steps:

1. Decide which character codeset to use for translation depending
on which languages you need to support and on which operating
systems your application must execute. Different codesets used
on the various platforms that XVT supports are listed in section
A.2 in Appendix A.

2. Translate string literals to the target language.

3. Set up special strings such as dates and times for formatting.

4. Select the appropriate keyboard modifiers, mnemonics and
accelerators.

5. Select fonts appropriate to the character codeset.

6. Provide locale-specific icons and colors.

7. Adjust text and graphic object sizes and positions.

8. Compile locale-specific resource and help files.
9. Establish the proper operating/window system locale-specific
environment (set up environment variables, code pages, etc.).

10. Set the application locale environment information (locale
information can be bound at application build time or
application startup time.

See Also: To see hundreds of examples of international symbols used in
various fields of endeavor, refer to Symbol Sourcebook: An
Authoritative Guide to International Graphic Symbols, by Henry
Dreyfuss, published by Van Nostrand Reinhold, New York, N.Y.,
1984.

Localization

For XVT-Design Users Only

If you are an XVT-Design user, refer to the following list of general
steps to localize your XVT application. Most of the information in
these steps is described in greater detail in later sections of this
chapter or in the XVT Platform-Specific Books. Another source of
information is the chapter on Internationalization and Localization in
the XVT-Design Manual.

1. Execute the strscan utility on all of your *.c and *.xrc files to
generate the include files strres.h and strdef.h. If you have
carefully followed steps 4 through 7 (on page 19-5), strres.h
now contains all your locale-specific strings. View both files
after running the utility.

2. Make copies of strres.h and give them names that co-workers
will recognize as locale-specific resource files, such as
engres.h and gerres.h. You will want to adopt a file naming
convention for your different versions of strres.h. Renaming
the files protects you in the future when you run strscan, since
strres.h is consistently and predictably overwritten when it
already exists. Filenaming conventions are discussed in more
detail in section 19.2.1 on page 19-18.

3. Using the SPCL:I18N_XRC tag in the ACE, replace the reference
to strres.h with references to a file of strings translated into

γ

19-7

German, gerres.h, and another file of English strings, engres.h.
When the editing in your application resource file is complete,
this section of code will resemble the following:

#ifdef XVT_LOCALIZABLE
#ifdef LANG_GER_W52

#include “gerres.h”
#else /* English */

#include “engres.h”
#endif
#endif

If you are supporting multiple languages in other localized files,
modify the above code as needed to reference these files, as
well.

4. Translate the strings in the locale-specific resource files, such as
gerres.h, for the locales you need to support.

5. Consider redefining the way dates or money variables are
displayed (to match local practices). Likewise, in your external
files (those not generated by XVT-Design), search for all sprintfs

XVT Portability Toolkit Guide

19-8

that you wish to format for locale-specific display. For more
details and an example, refer to section 19.3.4 on page 19-43.

6. Compile your resources and check the translation of text and the
size and position of GUI objects.

7. Adjust the size and positions defined by creation rectangles in
strres.h to accommodate the increased or decreased lengths of
the translated strings.

You do not need to re-translate your entire strres.h file when you
make changes to your application. Usually it is only necessary to
regenerate strres.h and strdef.h using strscan, then identify the
strings that have been added or changed and add their translated
equivalents to your translated versions of strres.h.

Building the locale-specifc executable requires the setting of one or
more specific #defines. XVT source code files are “localized” when
XVT_LOCALIZABLE is defined, and switch to a specific language
based upon other #defines, as well. To build the locale-specifc
executable, follow these additional steps:

8. Modify your makefile or makefile templates to build localized
versions of your resources. If you wish to build, for example, a
German version, you would also define LANG_GER_W52. The
various compile constants you can use are listed in Table 19.2
on page 19-19.

Refer to the example at the end of this section for an example of
how to modify a UNIX makefile. Different programmers or

organizations have their own personal preferences and different
platforms will require slightly different syntax.

On some platforms, you may need to run xrc manually from
the command line, as shown in the following XVT/Win32 xrc
compile statement:

xrc -r rcwin -i..\..\ include -dLANG_GER_W52
-dLIBDIR=.\..\..\lib app.xrc

Although the command line shown above is printed on two
lines, you should enter a command line as a single line.

You now have a resource file—if you view it, you will see, in
this case, that all strings are now in German.

9. If your makefile did not completely finish the build, you should
now complete any unfinished steps in your build process.

Localization

Example: This example shows a UNIX makefile that builds a German version
of an XVT application:

Define localized options.
Start a German build.

LOCALIZE_OPTS = -dLANG_GER_W52
CC_OPTS = -c $(INC_PATH)
XRC = $(XVT_DSC_DIR)/bin/xrc
...

#
Include the defines in all source code compilations
.c.o

$(CC) $(CC_OPTS) $(LOCALIZE_OPTS) $<
Also pass them to xrc
app.uil: app.xrc

$(XRC) $(XRC_OPTS) $ (LOCALIZE_OPTS) app.xrc
...

This marks the end of XVT-Design-specific information about
localization.

See Also: For more information about specifying resources with XRC, see
Chapter 5, Resources and XRC.
For more information about using xrc, including a list of xrc
options, see the XVT Portability Toolkit Reference.

19.1.1.3. Terminology
This section introduces the terminology that is used later to describe

γ

19-9

the details of internationalization and localization.
category

A category is one of several components that, when taken
together, describe a locale. The most common categories are
listed below:
capitalization and contextual characters

The use of a capitalized character or other forms of a
character may vary depending upon its position in a word
or message.

character code set (or codeset)
The set of numerical codes that represent encoded
characters.

collation algorithm
The scheme by which a list of characters is properly
ordered or searched for a given language and culture.

XVT Portability Toolkit Guide

19-10

color
The meanings of colors vary between cultures.

icons
Graphic symbols with particular cultural connotations.

language
The characters, words, combinations of words, and
punctuation conventions particular to a country, region,
culture, or other speech community.

layout
The arrangement of text and GUI objects based on
language and cultural norms.

keyboard modifiers, accelerators and mnemonics
The Shift key, Control key, Option key, Alt key,
accelerators, and mnemonics have different contextual
meanings in different cultures.

monetary, postal address, telephone number, weight, and
measure notations
The representation of common cultural information.

numeric representation
The symbols used for numeral notation such as decimal
values (‘,’ versus ‘.’) or accounting debit indication
(‘$-23.45’ versus ‘($23.45)’).

time/date representation
The order and format of times and dates.

code page

A code page is a platform-specific term for the object that
encapsulates character codeset information in the Win32
environment.

character code
A character code is a numeric value representing a character of
a particular language.

character code set
A character code set (also known as a codeset in other literature)
is the set of character codes determined by a particular encoding
scheme representing characters in one or more languages. Some
commonly used character codesets include:
ASCII

American Standard Code for Information Interchange, the
U.S. version of the single-byte (7-bit) encoding scheme for
the ISO 646 standard character codeset.

Localization

EBCDIC
Extended Binary-Coded Decimal Interchange Code, the
single-byte encoding scheme once used extensively by
IBM, particularly in System/370.

Extended ASCII
The 8-bit version of the single-byte encoding scheme for
the ISO 8859 languages.

EUC
Extended UNIX Code, a multibyte encoding scheme with
single-shift encoding used by most UNIX systems.

JIS
Japanese Industrial Standard, a multibyte encoding scheme
for Japanese using shift-sequences.

Shift-JIS
A multibyte encoding scheme for Japanese using single-
shift encoding.

Unicode
Universal character codeset, a wide character encoding
scheme (two bytes per character) that includes all
language characters in one character codeset, used by
Win32.

Each operating or windowing system may have its own
implementation of these character sets.
19-11

encoding scheme
An encoding scheme defines a set of parsing rules for encoding
a byte stream representation of a set of characters. Several types
of encoding schemes are single-byte (one byte per character),
multibyte (variably one or more bytes per character) or wide
character (more than one fixed number of bytes per character).

ideograph
An ideograph is a character that does not represent
pronunciation alone, but also encapsulates a word’s meaning.
Japanese Kanji characters are ideographs.

internationalization (I18N)
Internationalization (sometimes referred to as I18N, 18 being
the number of letters between the first I and the last N) is the
process of adapting application code so it can be easily
localized. Ideally, after I18N, the localization of an application
can be performed without changing or recompiling source code.

input method editor (IME)
An input method editor is a native window system-specific

XVT Portability Toolkit Guide

19-12

mechanism that allows a user to enter multibyte or wide
characters from a keyboard that does not support these
particular characters. These characters are then dispatched to
the application through conventional character events. For
example, on some systems, the IME translates English
keyboard characters into Kanji and delivers Kanji character
events to the application. Other IMEs access a dictionary that
allow phonetic spellings to be transposed into their
corresponding ideographs (actually its character codeset
representation), as in Katakana to Kanji.

invariant character codeset
The invariant character codeset is a subset of characters
common to most standard character codesets according to ISO
646. These character codes and glyphs remain the same across
compliant character codesets. This subset includes:

<space> ! ” % & ’ () * + , - . / : ; < = > ? _

0 1 2 3 4 5 6 7 8 9

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Note that the following characters in the ASCII codeset are not
invariant—that is, their character code values may map to
different glyphs in other character codesets:

$ @ [\] ^ ‘ { | } ~

International Standards Organization (ISO)
The International Standards Organization has as one of its

charters the development of computer standards. One of its
documents, ISO 646, defines standard character codesets.

Japanese characters
Japanese text may be comprised of characters from four
different character systems:
Kanji

Ideographic characters representing thousands of words.
Kana (Hiragana and Katakana)

Characters which represent about 80 phonetic sounds,
depicted as pictures.

Roman
Glyphs that represent letters, digits, and punctuation.

locale
A locale is a set of conventions based on some language,
culture, or nationality.

Localization

localization
Localization is the process of adapting a computer application
for a specific language, country, and culture.

multibyte character codeset (MBCS)
Each character in a multibyte character codeset (multibyte
character encoding scheme) is encoded variably as one or more
bytes per character. Multibyte encoding is accomplished by one
of two methods:
The shift-sequence method, often called stateful encoding or
locking shift, uses escape codes (a shift-sequence) within a
string to switch between one- and two-byte character modes, or
between different character codesets. When an encoding shift is
encountered in a byte stream, all subsequent characters are
interpreted in the new encoding until another shift-sequence
occurs.
In the single-shift method, character code length is specified in
the initial byte of a character. The range of the value of the first
byte indicates whether the individual character code consists of
one, two or three bytes.
Multibyte encoding schemes must be used to represent
languages such as Japanese, Chinese, or Korean due to the large
number of characters in these languages. Note that the Shift-JIS
character codeset for Japanese uses the single-shift method,
hence the name.
19-13

single-byte character codeset (SBCS)
A single-byte character requires one and only one byte for its
encoding. Single-byte character codesets (single-byte encoding
scheme) are used to represent English and most European
languages. English is most often encoded by one of two single-
byte encoding schemes in either the ASCII or the EBCDIC
character codesets.
Although single-byte encoding may be considered a subset of
either multibyte or wide character encoding, it is distinguished
separately in this book for clarity.

wide character (wchar_t)
A wide character is an encoding scheme in which all characters
are of a specific fixed byte length (generally greater than 1 byte
per character). Each character has a unique encoding. In the C
programming language, wide characters are defined as type
wchar_t (two bytes per character). Unicode is another character
codeset based on the wide character encoding scheme.

XVT Portability Toolkit Guide

19-14

19.1.2. Multibyte Awareness in XVT Applications
This section provides an overview of the XVT Portability Toolkit
(PTK) elements that support internationalization and localization
and how you use these elements to adapt your XVT applications.

19.1.2.1. Support for Character Codesets
The XVT Portability Toolkit is internationalized to the extent
that all of its API functions support both single-byte and multibyte
characters (depending upon the value of ATTR_MULTIBYTE_AWARE).
Applications can be localized to some languages without switching
to a multibyte (MBCS) character codeset. However, localizing to
other languages, such as Japanese, requires two levels of planning:

• Placing your application resources in separate, external files
so that your application can be easily localized in the future.

• Adapting your application so it can handle multibyte (wide
character) character codesets.

The XVT PTK uses only one character codeset at a time. The
Portability Toolkit fully supports the ASCII or Extended ASCII
character codesets. It allows the manipulation of characters in
single-shift MBCS, such as the Extended Unix Code (EUC) or Shift-
JIS character codesets on the platforms where they are implemented.
Although the supported MBCS vary by platform, you can write
portable XVT code that is independent of a specific MBCS.

The PTK also provides support for wide characters. Wide characters
permit rapid character pointer arithmetic compared with multibyte

strings. Functions for translating wide characters to multibyte and
vice-versa enable you to optimize the performance of your string
processing.

The PTK does not directly support shift-sequence MBCS encodings,
such as JIS (Japanese Industrial Standard), nor does it support
Unicode (other than as wide characters on MS-Windows Win32) or
MIT Compound Strings. You may use these character codesets but
you must convert the characters to single-shift multibyte for use in
XVT functions. Right-to-left or vertical (top-to-bottom) languages
are also not supported.

Localization

19.1.2.2. Localized PTK Resources
For your convenience, XVT provides compatible localizations of
standard PTK resources and help text; the various codesets used to
provide these resources are listed in Table 19.1.

Table 19.1. Localized versions of standard PTK resources and help
text predefined for five languages

See Also: Filenames and filenaming conventions for the files listed in Table
19.1 are discussed in section 19.2.1 on page 19-18.

Note: You are not limited to these localizations, but you may want to use
these as a basis for localizing your own applications.

The XVT PTK data is externalized in one of three file types for

Language: XVT/Win32: XVT/Mac: XVT/XM:

US English ANSI
(Windows 1252)

Mac-Roman ASCII
(ISO 646)

French
German
Italian

ANSI
(Windows 1252)

Mac-Roman ISO-Latin-1
(ISO 8859-1)

Japanese Shift-JIS
(Codeset 932)

Shift-JIS
(Mac-Japanese)

Shift-JIS, AJEC
(Japanese EUC)
19-15

localization by your application:
• Standard XVT resource strings (XRC)
• Standard XVT help strings
• Standard XVT error messages

For convenience, a set of XVT constants is provided to allow the
standard XVT resource strings and help text files to be easily
included in your applications; these constants are listed in Table 19.2
on page 19-19.

XVT Portability Toolkit Guide

19-16

19.1.2.3. Changes to PTK Release 4.0 Functions that
Accept Strings
XVT PTK functions that accept strings as arguments also accept
multibyte strings for applications executing in multibyte-aware
mode. However, for functions that require character index or buffer
size parameters, the meanings of these parameters may have
changed. In multibyte-aware mode, the following Release 4.0 data
types and functions have buffer sizes expressed in number of bytes
(versus characters):

FILE_SPEC
SCROLL_CALLBACK
xvt_cb_get_data
xvt_cb_put_data
xvt_dm_post_string_prompt
xvt_dwin_get_font_family
xvt_dwin_get_font_family_mapped
xvt_dwin_get_font_native_desc
xvt_errmsg_get_text
xvt_font_get_family
xvt_font_get_family_mapped
xvt_font_get_native_desc
xvt_font_serialize
xvt_fsys_convert_str_to_dir
xvt_list_get_elt
xvt_list_get_first_sel
xvt_res_get_str
xvt_str_find_eol
xvt_tx_get_line
xvt_vobj_get_title

For multibyte applications, you should increase the buffer sizes

appropriately when using these functions.

Regardless of whether an application is operating in multibyte-
aware mode, the following Release 4.0 functions have buffer sizes
or character indices expressed in number of characters (versus
bytes):

xvt_ctl_get_text_sel
xvt_ctl_set_text_sel
xvt_dwin_draw_text
xvt_dwin_get_text_width
xvt_tx_get_num_chars
xvt_tx_get_sel

Localization

19.1.2.4. Input Method Editors
Input Method Editors (IMEs) are provided by native windowing
systems to allow users to enter multibyte or wide characters through
a keyboard that does not support these characters. On each system,
certain attributes must be set to allow the user to create composed
multibyte characters. These composed characters are defined by
specific keyboard values that are typed while an IME is invoked.
The method for invoking IMEs is platform-specific.

Generally, the use of IMEs does not result in any requirement for
special action by applications. Character events are generated with
the appropriate character codes for the composed characters.

See Also: Refer to the XVT Platform-Specific Books for more information on
invoking and using Input Method Editors.

19.2. How the XVT API Supports Internationalization
The XVT Portability Toolkit is internationalized to the extent
that all of its API functions support both single-byte and multibyte
characters (depending upon the value of ATTR_MULTIBYTE_AWARE).
Furthermore, all internal PTK strings and resources have been
externalized so they can be easily localized in your applications.

Several different aspects of the XVT PTK API provide support for
internationalization and localization. These API elements include:
19-17

• Filenaming conventions
• Portable attributes
• Data types
• Constants
• String functions
• E_CHAR (character) event
• Resource file binding

How each of these API elements supports internationalization and
localization is discussed in the sections that follow.

XVT Portability Toolkit Guide

19-18

19.2.1. PTK Filenaming Conventions
XVT’s PTK uses a set of conventions for defining relevant constants
and filenames using three character abbreviations for language and
three or four character abbreviations for character codeset (see
Appendix A for a complete list of these abbreviations):

• Language constant

LANG_<3 character language>_<3-4 character codeset>

Default: U.S. English ASCII does not require a
language constant

• XRC standard resource strings file

u<3 character language><3-4 character codeset>.h

Default: uengasc.h (U.S. English ASCII)

• XVT standard help text file (included by xvt_help.csh to
provide help topic text on reserved help topic symbols)

h<3 character language><3-4 character codeset>.csh

Default: hengasc.csh (U.S. English ASCII)

• XVT error code strings file:
e<3 character language><3-4 character codeset>.txt

Default: ERRCODES.TXT (US. English ASCII,
the default filename does not adhere to this convention)

Localization

Table 19.2 lists the language and character codeset constants and
filenames recognized in the XVT Portability Toolkit. XVT resource
and help compilers recognize these constants for automatic
inclusion of appropriate filenames:

Language: Compile XRC Help Error
Constant: Strings Text Messages

Filename: Filename: Filename:
XVT/XM:

U.S. English (Default) uengasc.h Ð hengasc.csh Ð ERRCODES.TXT Ð
French LANG_FRE_IS1 ufreis1.h Ð hfreis1.csh Ð efreis1.txt
German LANG_GER_IS1 ugeris1.h Ð hgeris1.csh Ð egeris1.txt
Italian LANG_ITA_IS1 uitais1.h Ð hitais1.csh Ð eitais1.txt
Japanese (SJIS) LANG_JPN_SJIS ujpnsjis.h Ð hjpnsjis.csh Ð ejpnsjis.txt
Japanese (EUC) LANG_JPN_UJA ujpnuja.h Ð hjpnuja.csh Ð ejpnuja.txt
Norwegian LANG_NOR_IS1 unoris1.h hnoris1.csh enoris1.txt
Russian LANG_RUS_IS1 urusis1.h hrusis1.csh erusis1.txt
Spanish LANG_SPA_IS1 uspais1.h hspais1.csh espais1.txt
Swedish LANG_SWE_IS1 usweis1.h hsweis1.csh esweis1.txt

XVT/Win32:

U.S. English (Default) uengasc.h Ð hengasc.csh Ð ERRCODES.TXT Ð
French LANG_FRE_W52 ufrew52.h Ð hfrew52.csh Ð efrew52.txt
19-19

German LANG_GER_W52 ugerw52.h Ð hgerw52.csh Ð egerw52.txt
Italian LANG_ITA_W52 uitaw52.h Ð hitaw52.csh Ð eitaw52.txt
Japanese LANG_JPN_SJIS ujpnsjis.h Ð hjpnsjis.csh Ð ejpnsjis.txt
Norwegian LANG_NOR_W52 unorw52.h hnorw52.csh enorw52.txt
Russian LANG_RUS_W51 urusw51.h hrusw51.csh erusw51.txt
Spanish LANG_SPA_W52 uspaw52.h hspaw52.csh espaw52.txt
Swedish LANG_SWE_W52 uswew52.h hswew52.csh eswew52.txt

Note: XVT provides only those localized files denoted by Ð.
Table 19.2. Language and character codeset constants and

filenames recognized in the XVT Portability Toolkit
(part 1 of 2)

XVT Portability Toolkit Guide

19-20

Language: Compile XRC Help Error
Constant: Strings Text Messages

Filename: Filename: Filename:
XVT/Mac:

U.S. English (Default) uengasc.h Ð hengasc.csh Ð ERRCODES.TXT Ð
French LANG_FRE_MRMN ufremrmn.h Ð hfremrmn.csh Ð efremrmn.txt
German LANG_GER_MRMN ugermrmn.h Ð hgermrmn.csh Ð egermrmn.txt
Italian LANG_ITA_MRMN uitamrmn.h Ð hitamrmn.csh Ð eitamrmn.txt
Japanese LANG_JPN_SJIS ujpnsjis.h Ð hjpnsjis.csh Ð ejpnsjis.txt
Norwegian LANG_NOR_MRMN unormrmn.h hnormrmn.csh enormrmn.txt
Russian LANG_RUS_MCYR urusmcyr.h hrusmcyr.csh erusmcyr.txt
Spanish LANG_SPA_MRMN uspamrmn.h hspamrmn.csh espamrmn.txt
Swedish LANG_SWE_MRMN uswemrmn.h hswemrmn.csh eswemrmn.txt

Note: XVT provides only those localized files denoted by Ð.
Table 19.2. Language and character codeset constants and

filenames recognized in the XVT Portability Toolkit
(part 2 of 2)

Localization

The file xrc.h has a conditional compile statement for the compile
constants defined in the preceding table (such as LANG_JPN_SJIS) that
will include the appropriate resource strings file (for example,
ujpnsjis.h). This constant can be defined on the xrc compile line or
in your XRC file. The file xvt_help.csh has a conditional compile
statement which will include the appropriate help strings file (like
hjpnsjis.csh). The constant can be defined on the helpc compile line
or in the help file. The file xvt_help.csh should be included in your
application help source (.csh) file if you intend to use the XVT
default help topics.

XVT supplies only the localized resources and help text noted on the
previous pages (U.S. English, French, German, Italian and
Japanese). Use these localizations as a basis for adapting your own
application locales. You may also want to add your own language
constants.

See Also: For more information on using localized resources with your XVT
applications, refer to sections 19.2.7 on page 19-32 and 19.4.7 on
page 19-55 and also to the XVT Platform-Specific Book for your
particular platform.
For a complete list of XVT language and character codeset
abbreviations, refer to Appendix A.
Page revised 4/15/96 19-21

XVT Portability Toolkit Guide

19-22

19.2.2. XVT Portable Attributes
This section contains information that amends section 2.4.

Several XVT attributes enable internationalization and localization
of your applications:
ATTR_APPL_NAME_RID

The resource ID of a multibyte string, set prior to calling
xvt_app_create, to override the XVT_CONFIG application
initialization structure appl_name string (document window name
prefix).

ATTR_COLLATE_HOOK
A hook function used for the collating sequence in calls to
xvt_str_collate, xvt_str_collate_ignoring_case, and xvt_slist_add_sorted.

ATTR_ERRMSG_FILENAME
The name of a file used to select the desired localized XVT error
system messages.

ATTR_MULTIBYTE_AWARE
The flag, set prior to calling xvt_app_create, which informs the
PTK whether the application may be using a multibyte
character codeset. Even if this attribute is set (TRUE) for
multibyte aware, single-byte character codesets can be
processed. This attribute is also responsible for selecting the
appropriate version of an application key hook function, the
proper use of E_CHAR fields, and the optimization of string
processing for the possible character codeset.

ATTR_RESOURCE_FILENAME
The name of a file used to select the desired localized resource

file, set prior to calling xvt_app_create, to override the
XVT_CONFIG application initialization structure base_appl_name
string (application base name).

ATTR_TASKWIN_TITLE_RID
The resource ID of a multibyte string, set prior to calling
xvt_app_create, to override the XVT_CONFIG application
initialization structure taskwin_title string (task window title).

Note: The XVT help system already provides a mechanism for your
applications to specify the directory and filename of a help file.

See Also: For more information about system attributes, refer to section 2.4 in
Chapter 2, About the XVT API.

Localization

19.2.3. XVT Data Types
This section discusses the data types you will need to use in
developing internationalized applications.

19.2.3.1. Characters and Strings
Single- and multibyte characters and strings are defined by an ANSI
type in the following manners:

• Type char is used for single-byte (ASCII and Extended
ASCII) and multibyte characters

• char arrays for single- and multibyte strings
• char* for pointers to single- or multibyte strings.

char values are used by all XVT PTK functions that require
characters or strings, regardless of whether your application is
multibyte or single-byte. Because each character may be a different
size, char* pointers should not be used for pointer arithmetic,
particularly if multibyte characters sets are to be supported.

XVT wide characters and strings are encapsulated by an XVT type
in the following manner:

• Type XVT_WCHAR is used for wide characters
• XVT_WCHAR arrays for wide character strings
• XVT_WCHAR* pointers to wide character strings
19-23

XVT_WCHAR is generally equivalent to the ANSI wchar_t type, which
is not supported by all compilers. XVT_WCHAR should be used in
place of wchar_t in XVT applications.

Wide characters must be converted, as appropriate, to single-byte or
multibyte characters before use in some XVT PTK functions. XVT
provides functions for converting from wide characters to multibyte
characters (and reverse). In converting individual wide characters to
single-byte, a simple cast is sufficient unless the high byte of the
wide character is significant (as is the case for the virtual key
characters delivered in an E_CHAR event). XVT_WCHAR wide
characters are delivered by the XVT PTK in E_CHAR events. In
single-byte mode, the high byte of this character indicates whether
or not the character represents a virtual key.

XVT Portability Toolkit Guide

19-24

There are two options for processing individual characters of a
string:

• Use XVT_WCHAR* pointers for performing pointer arithmetic.
• Use XVT convenience functions for incrementing and

decrementing a character pointer in a multibyte string.

The first option may be faster for processing long strings because
XVT_WCHAR characters are a fixed length and are easier to process.

19.2.3.2. Byte Streams
XVT byte streams are defined by pointers to types XVT_BYTE and
XVT_UBYTE. These types should be used in place of char or
unsigned char, respectively, when the data is to be used for raw data
processing. These data types should not be used for defining
characters or strings. A pointer to XVT_BYTE is equivalent to the
XVT type DATA_PTR.

See Also: For more information about XVT data types, see the “Data Types”
portion of the XVT Portability Toolkit Reference.

19.2.4. XVT Constants
This section discusses the constants you will need to use in
developing internationalized applications.

19.2.4.1. Filename Sizes
The XVT constant SZ_LEAFNAME defines the maximum byte length

of a single token in a file pathname (a directory name or a filename).
This maximum value takes into account any file extensions
(including the periods '.') but excludes pathname delimiters (‘/’, ‘\’ or
‘:’). The value of this constant is platform-specific and may depend
on the character codeset used.

On the other hand, the XVT constant SZ_FNAME defines the
maximum byte length of an entire pathname including file
extensions and delimiters.

See Also: For more information on SZ_LEAFNAME and pathname functions, see
section 17.1.2 in Chapter 17, Files.

Localization

19.2.4.2. Character Sizes
The XVT constant XVT_MAX_MB_SIZE defines the maximum byte
size of the largest multibyte character on a specific platform. Use
this constant to allocate memory for multibyte character arrays.

Example: The following code shows how to convert a wide character string to
the equivalent multibyte string using XVT_MAX_MB_SIZE to size the
multibyte string array:

int size;
char mbs[XVT_MAX_MB_SIZE * 100];
XVT_WCHAR wcs[100];
...
size = xvt_str_convert_wcs_to_mbs(mbs, wcs);
mbs[size] = (char)0;

See Also: For more information about XVT constants, see the “Constants”
portion of the XVT Portability Toolkit Reference.

19.2.5. XVT String Functions
Some compilers do not support the processing of multibyte or wide
characters in their ANSI C Libraries. XVT supplies functions which
encapsulate this functionality on platforms that do and implements
it on platforms that do not. These functions should be used in place
of the ANSI functions wherever appropriate in XVT applications.

Note: If a particular XVT string function is not appropriate for a multibyte
character codeset, then it operates without modifying the contents of
19-25

the passed string. For example, xvt_str_convert_to_upper is not
appropriate for Japanese, so it simply returns the passed string
unconverted.

19.2.5.1. Character Set Conversions
The following XVT functions support the conversion of characters
or strings between wide characters and multibyte or single-byte
characters:
xvt_str_convert_mb_to_wc

Converts the first character of a single-byte or multibyte string
to a wide character.

xvt_str_convert_mbs_to_wcs
Converts a single-byte or multibyte string to a wide character
string.

xvt_str_convert_wc_to_mb
Converts a wide character to a single-byte or multibyte
character.

XVT Portability Toolkit Guide

19-26

xvt_str_convert_wcs_to_mbs
Converts a wide character string to a single-byte or multibyte
string.

19.2.5.2. String Processing
The following convenience functions are the only wide character
processing functions provided by XVT:
xvt_str_convert_wchar_to_lower

Converts a wide character to a lowercase wide character.
xvt_str_convert_wchar_to_upper

Converts a wide character to an uppercase wide character.

The following functions encapsulate ANSI C string operations and
may be used for single-byte or multibyte character codesets
(remember, you cannot mix single-byte and multibyte codesets
within a single XVT application):
xvt_str_collate

Collates two strings (collation algorithm depends on the
ATTR_COLLATE_HOOK function).

xvt_str_collate_ignoring_case
Same as xvt_str_collate except case is ignored (collation algorithm
depends on the ATTR_COLLATE_HOOK function with uppercase
and lowercase treated the same).

xvt_str_compare
Compares two strings.

xvt_str_compare_ignoring_case
Same as xvt_str_compare except case is ignored.
 xvt_str_compare_n_char
Compares n characters of two strings.

xvt_str_concat
Appends a copy of one string to the end of another string.

xvt_str_concat_n_char
Appends a copy of n characters from one string to the end of
another string.

xvt_str_convert_to_lower
Converts the first n bytes in one string to lowercase and copies
them to another (or the same) string.

xvt_str_convert_to_upper
Converts the first n bytes in one string to uppercase and copies
them to another (or the same) string.

xvt_str_copy
Copies one string into another string.

Localization

xvt_str_copy_n_char
Copies n characters from one string into another string.

xvt_str_copy_n_size
Copies n bytes from one string into another string.

xvt_str_duplicate
Makes a copy of a string.

xvt_str_find_char_set
Searches one string for the first occurrence of a character that is
also in a second string.

xvt_str_find_eol
Searches the first n bytes of a string for an end-of-line character
(newline, carriage return, or NULL).

xvt_str_find_first_char
Searches a string for the first occurrence of a specified
character.

xvt_str_find_last_char
Searches a string for the last occurrence of a specified character.

xvt_str_find_not_char_set
Searches a string for the first occurrence of a character that is
not in a second string.

xvt_str_find_substring
Searches a string for the first occurrence of a second string.

xvt_str_find_token
Finds string tokens.
19-27

xvt_str_get_byte_count
Counts the number of bytes in a string.

xvt_str_get_char_count
Counts the number of characters in a string.

xvt_str_get_char_size
Counts the number of bytes in a character.

xvt_str_get_n_char_count
Counts the number of complete characters in the first n bytes of
a string.

xvt_str_get_n_char_size
Counts the number of bytes in the first n characters of a string.

xvt_str_get_next_char
Increments a char pointer to the next character in a string.

xvt_str_get_prev_char
Decrements a char pointer to the previous character in a string.

xvt_str_is_alnum
Determines if the first character of a string is in the invariant
alphanumeric character codeset (a-z, A-Z, 0-9).

XVT Portability Toolkit Guide

19-28

xvt_str_is_alpha
Determines if the first character of a string is in the invariant
alphabetic character codeset (a-z, A-Z).

xvt_str_is_digit
Determines if the first character of a string is in the invariant
decimal character codeset (0-9).

xvt_str_is_equal
Determines if two strings are equal (character for character)
and of the same length.

xvt_str_is_invariant
Determines if the first character in a string is in the ISO 646
invariant character codeset. See section 19.1.1.3 on page 19-9
for a list of invariant characters.

xvt_str_is_lower
Determines if the first character in a string is in the invariant
lowercase alphabetic character codeset (a-z).

xvt_str_is_space
Determines if the first character in a string is a standard
whitespace character: space (‘ ’), form feed (‘\f’),
new-line (‘\n’), carriage return (‘\r’), horizontal tab (‘\t’), or
vertical tab (‘\v’).

xvt_str_is_upper
Determines if the first character in a string is in the invariant
uppercase alphabetic character codeset (A-Z).

xvt_str_is_xdigit
Determines if the first character in a string is a hexadecimal
digit (0-9, A-F, a-f).
xvt_str_match
Performs simple pattern matching.

xvt_str_parse_double
Converts a string to a double-precision floating point value.
This functions skips over any whitespace characters at the
beginning of the string and stops converting when it reaches a
character that can’t be part of a number (including characters).

xvt_str_parse_long
Converts a string to a long integer value in the indicated
numeric base. This function skips over any whitespace
characters at the beginning of the string and stops converting
when it reaches a character that can’t be part of a number
(including characters).

xvt_str_parse_ulong
Converts a string to an unsigned long integer value in the indicated
numeric base. This function skips over any whitespace

Localization

characters at the beginning of the string and stops converting
when it reaches a character that can’t be part of a number
(including characters).

xvt_str_sprintf
xvt_str_vsprintf

These functions process formats according to their equivalents
in the ANSI C specification, and also allow you to specify
argument order. See section 19.3.4 on page 19-43 for an
example of xvt_str_sprintf.

See Also: For detailed information about how multibyte strings are processed
by XVT, see section 19.3.3 on page 19-39.

19.2.6. E_CHAR Events

E_CHAR Event Structure
...
struct s_char {

XVT_WCHAR ch; /* wide character */
BOOLEAN shift; /* shift-key? */
BOOLEAN control; /* ctrl or

 option key? */
BOOLEAN virtual_key; /* virtual key? */
unsigned long modifiers; /* key bit field

 m odifiers */
} chr;
...
19-29

XVT sends an E_CHAR event to the event handler for a WINDOW
when the user types a character or virtual key code into a window.
The E_CHAR event is delivered only to the event handler of the
window which has the keyboard focus, and for which a control has
not absorbed the character event for its own use.

19.2.6.1. Processing Characters

The EVENT substructure chr sent to a window contains the
character code field (ch) which is an XVT_WCHAR. XVT_WCHAR
is an encapsulation of the ANSI wchar_t type, although this
implementation may vary depending on the amount of support
supplied by native ANSI C libraries. Applications should not make
assumptions about the size of the ch field.

Multibyte-aware applications must call the XVT function
xvt_str_convert_wc_to_mb before assigning a wide character
to a multibyte string array or processing the character with other
XVT functions. In a switch statement test of a wide character, a

XVT Portability Toolkit Guide

19-30

multibyte application must also compare the ch character to a wide
character constant.

It is recommended, though not required, that single-byte
applications also call xvt_str_convert_wc_mb. However, single-byte
applications can always cast XVT_WCHAR characters to char as long
as the character is not a virtual key (and does not rely on the virtual
key—high byte—portion of the XVT_WCHAR). In multibyte
applications, this method does not work because the high byte
portion is necessary for representing normal character keys.

19.2.6.2. Virtual Keys
XVT virtual key values are the K_* values (F1, Home key, etc.)
defined in the xvt_defs.h header file. Virtual keys in character
events may be detected in a variety of ways.

For the ASCII character codeset only, values of the ch field greater
than UCHAR_MAX indicate a virtual key (except for K_DEL which is
less than UCHAR_MAX).

The virtual_key member of the chr substructure is also set to TRUE to
distinguish virtual key characters. In multibyte applications, virtual
key codes may conflict with some multibyte character encodings.
Therefore, the virtual_key field must be validated for multibyte
applications.

Alternately, the most general means for testing for a virtual key
(regardless of character codeset) is to pass the EVENT structure to the
xvt_event_is_virtual_key utility function which determines if the

character in a E_CHAR event is a virtual key.

See Also: For more information on how virtual keys are processed, refer to
section 4.5.1 in Chapter 4, Events.

19.2.6.3. Key Hook Attribute
You can change the mapping of raw key codes (as generated by the
keyboard) to XVT virtual key codes, or add new codes, by changing
the default key hook function. This is done with the function
xvt_vobj_set_attr and the attribute ATTR_KEY_HOOK.

The parameters passed to a key hook function vary depending upon
whether your XVT application is capable of processing multibyte
characters (ATTR_MULTIBYTE_AWARE is set to TRUE). Parameters
also vary between platforms. In single-byte mode, hook functions
receive only platform-specific data. In multibyte-aware mode,
though, key hook functions on all platforms receive a pointer to the

Localization

EVENT structure (E_CHAR event) in addition to platform-specific
information. This is necessary because only the hook function
knows if it is mapping a passed character to a virtual key in a
multibyte-aware environment and can set the virtual_key member
properly. Note that the interface for multibyte hook functions is
called only if ATTR_MULTIBYTE_AWARE is set to TRUE, otherwise the
single-byte (default) interface is used.

See Also: For more detailed information on the E_CHAR event, refer to section
4.5.1 in Chapter 4, Events.
19-31

XVT Portability Toolkit Guide

19-32

19.2.7. Resource File Binding
This section contains information that supplements Chapter 5,
Resources and XRC.

In addition to allowing external XVT resources (see section 5.2 on
page 5-3), the XVT Portability Toolkit allows resources to be bound
to the application at application startup time. Executing any
localized application will, of course, require that you correctly
install the appropriate operating system, windowing system, and
fonts for the target locale.

Versions of your XRC files may be adapted to target locales and
languages. Multiple XRC files are compiled into separate binary
resource files using xrc and any appropriate native resource
compilers. The application may statically bind a base locale resource
to the application. Then, as the application is invoked, a new locale-
specific resource may be selected to override the default. Depending
on the platform, the selection may be made as early as before the
application is invoked, or as late as just before the call to
xvt_app_create. The selection method is platform-specific following
native guidelines:

XVT/XM
Prior to calling the xvt_app_create function, XVT/XM
applications may select the UID resource file using the
XVT attribute ATTR_RESOURCE_FILENAME. If this attribute
is not set, XVT/XM uses the UIDPATH environment
variable for determining resource location, or otherwise,
the basename of the application and the current directory

will be used. Follow the guidelines for each UNIX platform
for specifying locales (including setting the LANG_*
environment variable).

XVT/Mac
Prior to calling the xvt_app_create function, XVT/Mac
applications set a path to the resource file through the XVT
attribute ATTR_RESOURCE_FILENAME. If no path is
specified, the resources in the default application resource
fork will be used. The application may retrieve the
language or locale information from a file such as a
“preferences” file, or can query the Macintosh system to
get the default or current script system.

Localization

XVT/Win32
Prior to calling the xvt_app_create function, applications can
set a path to the resource file through the XVT attribute,
ATTR_RESOURCE_FILENAME. The application may retrieve
the language or locale information from a file such as an
application initialization (.ini) file or registry. The locale
resource files are bound in separate DLLs.

19.2.7.1. Configuration Attributes
Two attributes, ATTR_APPL_NAME_RID and
ATTR_TASKWIN_TITLE_RID, may be used to localize the strings used
for appl_name and taskwin_title in the XVT_CONFIG initialization
structure. The application cannot load the strings from resources
before calling xvt_app_create. Instead, these attributes set the string
resource ID to override the XVT_CONFIG values after xvt_app_create
has loaded the resource file.

Note: The base_appl_name member of XVT_CONFIG does not have a
corresponding attribute. This string is used in loading files such as
the resource or help file, and thus it cannot be easily localized.
19-33

XVT Portability Toolkit Guide

19-34

19.3. Internationalizing XVT Applications
This section describes the adaptations required to write an
internationalized XVT application:

• Using XVT resources for internationalization
• Extracting string literals
• Processing strings
• Formatting locale-specific strings
• Handling character events
• Extracting graphics and colors
• Loading fonts
• Determining GUI object size and position

These adaptations result in a general XVT application which can be
executed in both single-byte and multibyte environments (assuming
the proper localizations have been made).

19.3.1. Using the XVT Resource Compiler
(XRC)
In order to avoid recompiling your application for each locale you
need to support, place locale-sensitive data external to your
application source code. For XVT applications, the easiest way to do
this is with the XVT Resource Compiler (XRC). XRC
resources allow you to externally define the layout, contents, and

data for your GUI objects. These resources may be compiled
separately from your application and then later bound at application
startup time. XVT provides the xvt_res_* functions for dynamically
accessing this resource data while the application is executing.

See Also: For more information on XRC, refer to Chapter 5, Resources and
XRC.
For more on the dynamic binding of resources, refer to sections
19.2.7 on page 19-32 and 19.4.7 on page 19-55.

Localization

19.3.2. Extracting String Literals
Any string literals in your application code that will be seen by users
should be moved to an external resource file so they can be
translated outside of the program. These string literals should be
replaced with calls to xvt_res_get_str to obtain the strings from a
resource file. Use the XRC string statement to define string literals in
resources. XVT recommends placing string literals in resource files
(as opposed to #define’d in header files) so they can be easily
localized without recompiling your application.

See Also: For more information on the XRC string statement, refer to the XVT
Portability Tookit Reference.

19.3.2.1. Character Codeset Issues
Although most multibyte character encoding schemes contain the
subset of ASCII characters, only those characters included in the
ISO 646 character codeset are guaranteed to be invariant. This
occasionally may cause problems for some special characters you
need to use (such as control characters or delimiters). Defining these
characters in your source code may present problems when porting
to other character sets.

Tip: One technique that you can use to avoid difficulties with non-
portable special characters is to define these characters in resource
strings classified by their purpose or usage. For example,
it might be better to associate the character ‘\’ with the identifier
19-35

ID_STR_DOS_DIR_DELIM (indicating that the character is a file
pathname delimiter) instead of just calling it ID_STR_BACKSLASH.
It is unlikely that you would ever need to change this character, but
if you do, it would be external to your source code.

XVT Portability Toolkit Guide

19-36

19.3.2.2. strscan Utility and String Literal Convenience Macros

XVT-Design generates source code and resource files with all
locale-specific information defined in a few special macros. The
XVT utility program, strscan, may be used to scan these files to
search for the special macros.

The strscan utility program scans XVT-Design-generated source
code and XRC resource files for references to special macros.
strscan uses the arguments passed to these macros to generate a
source code include file that contains resource IDs (strdef.h) and a
resource include file that contain resources for string literals
(strres.h)—this file can be easily localized.

LOCAL_C_STR is the most commonly used of the XVT-Design-
generated macros. You can also use it in your own application
source code. LOCAL_C_STR is defined as follows:

#ifdef XVT_LOCALIZABLE
#define LOCAL_C_STR(rid, literal, buf, size) \

xvt_res_get_str(rid, buf, size)
#else
#define LOCAL_C_STR(rid, literal, buf, size) \

literal
#endif

The expansion of the special XVT-Design-generated macros
depends upon whether the XVT_LOCALIZABLE macro is defined. You
can define XVT_LOCALIZABLE directly in your application header.
Alternatively, you can define it on the compile line of a source code

γ

or resource compiler.

Caution: strscan does not replace string literals in your application code,
but merely scans the code for calls to LOCAL_C_STR and other
localization macros to generate header and resource files which
contain the string literal values. Because #ifdefs are compile-time
pre-processor directives, and strscan is an independent executable
that runs prior to code compilation, strscan cannot properly process
your #ifdefs. Do not call LOCAL_C_STR in #ifdef’d code using the same
string resource ID with different strings (see example below).

Localization

XVT-Design uses the macro window IDs as a basis for creating
resource IDs for its generated calls to LOCAL_C_STR. If you are
using strscan with XVT-Design, and you have defined the macro
XVT_LOCALIZABLE, then you should not create any macro window
identifiers whose name lengths exceed 26 characters.

Example: The following code fragments show several lines of
non-internationalized application code followed by its adaptation
using LOCAL_C_STR and the corresponding header and resource
code generated by the strscan utility:

Non-internationalized source code:
...
#if XVTWS == MACWS

xvt_menu_set_item_title(win, USER_MENU_EXIT_TAG,
“Quit”);

#else
xvt_menu_set_item_title(win, USER_MENU_EXIT_TAG,

“Exit”);
#endif
...

Internationalized source code:
...
#define BUF_SIZE 1024
static char buffer[BUF_SIZE];
...
#if XVTWS == MACWS

γ

19-37

xvt_menu_set_item_title(win, USER_MENU_EXIT_TAG,
LOCAL_C_STR(LS_QUIT, “Quit”,

buffer, BUF_SIZE));
#else

xvt_menu_set_item_title(win, USER_MENU_EXIT_TAG,
LOCAL_C_STR(LS_EXIT, “Exit”,

buffer, BUF_SIZE));
#endif
...

strscan-generated header file (strdef.h):
...
#define LS_QUIT 1006
#define LS_EXIT 1005
...

strscan-generated resource file (strres.h):
...
STRING LS_QUIT “Quit”
STRING LS_EXIT “Exit”
...

XVT Portability Toolkit Guide

19-38

You need to include the strscan-generated header file in any module
that uses strings, and include the strscan-generated XRC and header
files in your application’s XRC file.

19.3.2.3. Renaming and Changing strscan-generated Files
By default , strscan generates two files: 1) strres.h (resource
include file), and 2) strdef.h (source code include file). You may
override these default filenames and use names of your own.

Note: strscan also allows you to specify the starting range and increment
of resource IDs as well as macro replacement values.

Localization

19.3.3. Processing Characters and Strings
The three main aspects of character and string processing in
internationalized XVT applications are:

• Replacing ANSI string functions with XVT portable string
functions

• Handling string pointers
• Adjusting string buffer sizes

19.3.3.1. Replacement ANSI String Functions
The standard C libraries are not multibyte-aware on some platforms
supported by XVT. The XVT Portability Toolkit (PTK) provides
portable multibyte-aware replacements for most ANSI C library
functions that take strings as parameters. XVT string functions are
portable and work on all platforms supported.

The following list shows standard ANSI C library functions and
their XVT API replacements.

ANSI Function: XVT Function:

atof xvt_str_parse_double
atoi xvt_str_parse_long
atol xvt_str_parse_long
isalnum xvt_str_is_alnum
isalpha xvt_str_is_alpha
19-39

isdigit xvt_str_is_digit
islower xvt_str_is_lower
isspace xvt_str_is_space
isupper xvt_str_is_upper
isxdigi xvt_str_is_xdigit
mblen xvt_str_get_char_size
mbtowc xvt_str_convert_mb_to_wc
mbstowcs xvt_str_convert_mbs_to_wcs
sprintf xvt_str_sprintf
strcat xvt_str_concat
strchr xvt_str_find_first_char
strcmp xvt_str_compare
strcmpi xvt_str_compare_ignoring_case
strcoll xvt_str_collate
strcpy xvt_str_copy
strcspn xvt_str_find_char_set
strlen xvt_str_get_char_count
strlen xvt_str_get_byte_count
strncat xvt_str_concat_n_char
strncmp xvt_str_compare_n_char
strncpy xvt_str_copy_n_char
strncpy xvt_str_copy_n_size
strrchr xvt_str_find_last_char

XVT Portability Toolkit Guide

19-40

strtpbrk xvt_str_find_char_set
strspn xvt_str_find_not_char_set
strstr xvt_str_find_substring
strtod xvt_str_parse_double
strtol xvt_str_parse_long
strtoul xvt_str_parse_ulong
strtok xvt_str_find_token
tolower xvt_str_convert_to_lower
toupper xvt_str_convert_to_upper
vsprintf xvt_str_vsprintf
wcstombs xvt_str_convert_wcs_to_mbs
wctomb xvt_str_convert_wc_to_mb

Note: If you decide to use standard ANSI functions, check your compiler
documentation to verify that they are fully ANSI-compliant and
multibyte-aware. Some functions, for example, strftime (not included
in the list above) may not be internationalized. Some ANSI
functions (for example, strcat, strcmp, strcpy, strlen, strstr) work with both
single-byte and multibyte character codesets. In general, it is safer to
use the XVT-supplied functions although they may be slower than
the C library functions because they do more error checking.

See Also: For more information on XVT string processing functions, see
section 19.2.5 on page 19-25.

19.3.3.2. Other XVT String Functions
The following are additional XVT-supplied functions that do not
have corresponding ANSI C library functions but that you might
want to use when coding your internationalized application:
xvt_str_collate_ignoring_case
xvt_str_convert_wchar_to_lower
xvt_str_convert_wchar_to_upper
xvt_str_duplicate
xvt_str_get_next_char
xvt_str_get_prev_char
xvt_str_find_eol
xvt_str_get_n_char_count
xvt_str_get_n_char_size
xvt_str_is_equal
xvt_str_is_invariant
xvt_str_match

See Also: For more information on XVT string processing functions, see
section 19.2.5 on page 19-25.

Localization

19.3.3.3. Manipulating String Pointers
Since multibyte characters can be one or more bytes long, single-
byte character pointer arithmetic is inadequate for multibyte-aware
XVT applications. Use the XVT-provided functions
xvt_str_get_next_char and xvt_str_get_prev_char for incrementing and
decrementing, respectively, character pointers. These functions are
appropriate for both single-byte and multibyte-aware applications.

Example: In this example, single-byte pointer arithmetic code is adapted for a
multibyte-aware application:

Non-internationalized code:
char *s;
...
for (s = buf; *s; s++) {

if (*s == ‘\n’)
break;

}

However, in a multibyte application, the character pointer s is
incremented to the next byte rather than the next character. It
would be quite possible for the second byte of a two-byte
character to have the same value as ‘\n’. The non-
internationalized code may be rewritten as follows:

Internationalized code:
char *s;
size_t len;
...
19-41

for (s = buf; *s; s += len) {
len = xvt_str_get_char_size(s);
if ((len == 1) && (*s == ‘\n’))

break;
}

Note: To comply with ANSI C requirements, no multibyte character
contains a second or other subsequent byte with a value of zero, so
there is no potential problem with ‘\0’ as there is with ‘\n’.

19.3.3.4. Wide Characters
XVT wide characters (XVT_WCHAR) provide another way to
manipulate multibyte character strings. The Portability Toolkit
(PTK) provides the following functions for converting single
characters or strings between multibyte encodings and wide
character encodings:

xvt_str_convert_mb_to_wc
xvt_str_convert_wc_to_mb
xvt_str_convert_mbs_to_wcs
xvt_str_convert_wcs_to_mbs

XVT Portability Toolkit Guide

19-42

You may find arrays of wide characters easier to manipulate than
multibyte strings since indexing is more straightforward. If your
XVT application needs to manipulate many strings, it may be
worthwhile to maintain the strings as wide character arrays and
convert to and from multibyte characters only when necessary.

See Also: For more information on XVT string processing functions, see
section 19.2.5 on page 19-25.

Example: The code in the previous example could also be written as follows
for wide character encoding:

char mbcs[MAX_BUF_SIZE];
XVT_WCHAR wcs[MAX_BUF_SIZE];
int i, nchars;
...
nchars = xvt_str_convert_mbs_to_wcs(wcs,

mbcs, MAX_BUF_SIZE);
...
for (i = 0; i < nchars; i++) {

if (wcs[i] == L’\n’)
break;

}

This code uses the standard C notation L’\n’ to enforce the use of a
wide character literal that corresponds to the indicated single-byte
character value '\n'. For most compilers, the character literals L’\n’
and ‘\n’ are the same numerically, but you cannot assume that this
equivalence is supported by all compilers. As a result of this
limitation, use the PTK function xvt_str_convert_mb_to_wc to convert a
single-byte character to a wide character. Alternatively, you may
want to save commonly-used character literals in an external file
where they can be easily localized.
19.3.3.5. String Buffer Sizes
When working with multibyte character strings, it is often important
to differentiate between the number of bytes and the number of
characters in a string or substring. The PTK provides the following
functions for counting bytes and characters:

xvt_str_get_byte_count
xvt_str_get_char_count
xvt_str_get_char_size
xvt_str_get_n_char_count
xvt_str_get_n_char_size

For PTK functions that accept both a string and a numeric value as
parameters, you need to know whether the numeric value specifies
the number of bytes or characters. This distinction is important if
you are adapting existing code for international support.

Localization

See Also: To see lists of functions that require information about number of
bytes and number of characters, refer to section 19.1.2.3 on page
19-16.

Example: In this example, strlen is replaced with multibyte-aware code.

Non-internationalized code:
int nchars, nbytes;
char * string;
...
nbytes = nchars = strlen(string);

Internationalized code:
int nchars, nbytes;
char * string;
...
nbytes = xvt_str_get_byte_count(string);
nchars = xvt_str_get_char_count(string);

19.3.3.6. Filenames and Pathnames
Since file and pathnames may contain multibyte characters, they
must be treated like other multibyte strings. All PTK functions and
data types that accept file or pathname strings are multibyte capable.

See Also: For more information on processing filenames, see Chapter 17,
Files.

19.3.4. Formatting Locale-specific Strings
19-43

In some cases, moving string literals to a resource file for translation
may not provide full string internationalization. For example, the
month and date fields of a date/time stamp created via sprintf may
need to be swapped for different locales. The XVT Portability
Toolkit functions xvt_str_sprintf and xvt_str_vsprintf work similar to
ANSI sprintf and vsprintf. These XVT functions provide an additional
%<digit>$ format specifier where <digit> indicates a parameter’s
position in the resulting formatted string.

Example: In this example, an ANSI C style string format specifier is replaced
by the corresponding XVT string format specifier:

ANSI style:
sprintf(buf, “Date: %d/%d/%d”, month, day, year);

The month value is substitued for the first %d, the day for the
second %d, and the year for the third %d. In many locales, this is
not the preferred order and the result will be confusing to the
user.

XVT Portability Toolkit Guide

19-44

XVT style:
int month=5, day=24, year=95;
...
xvt_str_sprintf(buf, “Date: %1$d/%2$d/%3$d”, month,

day, year);

Result: “Date: 5/24/95”

In this case, the result is the same. The month value is
substituted for %1$d, the day is substituted for %2$d, and the year
is substituted for %3$d. However, if this format string is moved
to the resource file, it can be modified to suit the locale. For
example, you could easily change the format specification for
German:
int month=5, day=24, year=95;
...
xvt_str_sprintf(buf, “Heute: %2$d.%1$d.%3$d”, month,

day, year);

Result: “Heute: 24.5.95”

You will need to extract from your code any strings used to
construct dates, time, numbers, or currency values for display to
users. Since the formatting of these strings varies with locale (as
demonstrated above), you will want them in resource files for
easy localization. For example:
xvt_str_sprintf(buf,

LOCAL_C_STR(LS_date,
“Date: %1$d/%2$d/%3$d”,
xdStrBuf1, BUFSIZE),

month, day, year);
19.3.5. Handling Character Events
The EVENT substructure chr sent to a window for an E_CHAR
character event contains a character code field (ch) defined as an
XVT wide character type XVT_WCHAR. Multibyte-capable
applications use the XVT function xvt_str_convert_wc_to_mb to convert
this wide character to a multibyte character before processing it with
other XVT functions. In a switch statement test of a wide character, a
multibyte application must also compare the ch character to a wide
character constant.

Note: It is recommended, but not required, that single-byte applications
also use xvt_str_convert_wc_to_mb (because you may need to support
multibyte applications in the future). However, single-byte
applications can always cast XVT_WCHAR characters to char as long
as the character is not a virtual key (and must rely on the virtual key,
high byte, portion of the ch field).

Localization

See Also: For more multibyte-oriented information on the E_CHAR character
event, refer to section 19.2.6 on page 19-29.

Example: This code demonstrates the processing of a multibyte character
delivered in an E_CHAR event:
long XVT_CALLCONV1 win_eh(WINDOW win, EVENT *ep)
{

char mbc[XVT_MAX_MB_SIZE];
int len, width;
...
switch (ep->type) {

...
case E_CHAR:

...
if (!xvt_event_is_virtual_key(ep)) {

len = xvt_str_convert_wc_to_mb(mbc,
ep->v.chr.ch);

width = xvt_dwin_get_text_width(win,
mbc, 1);

}
...
break;

...
}

}

19.3.6. Extracting Graphics and Colors
You may need to place graphics and color information in an external
file when coding internationalized applications.
19-45

19.3.6.1. Icon Controls
Objects such as control icons and XVT images can be placed in an
external resource file. Use the icon XRC statement to define an
external bitmap for an icon control.

See Also: For information on icon controls in XRC, see the icon XRC statement
in the XVT Portability Toolkit Reference and the XVT Platform-
Specific Books.

19.3.6.2. Drawn Images
To retrieve a bitmap for drawing into a window, use the image XRC
statement to define an external bitmap, and in your source code, use
xvt_res_get_image to get the image from resources.

See Also: For more information on portable images defined in XRC, see the
image XRC statement in the XVT Portability Toolkit Reference.

XVT Portability Toolkit Guide

19-46

19.3.6.3. Colors
XVT does not support a color statement in XRC; however, you may
use userdata statements to define external color references.

See Also: For more on XRC user data, see the userdata XRC statement in the
XVT Portability Toolkit Reference.

Example: This example demonstrates how three XVT colors may be stored
externally and obtained from a single window resource userdata
statement (implemented for a single-byte character codeset):

XRC file:
...
window COLOR_WIN_101 XRC_RECT(61,169,339,380) \

“Color Test” doc size \
userdata “0x00FF0000 0x0000FF00 0x000000FF”

...

These colors now may be modified easily for other locales.

Source code file:
...
char* udata, end;
COLOR local_red, local_green, local_blue;
...
udata = xvt_res_get_win_data(COLOR_WIN_101, 0, 0);
local_red = xvt_str_parse_ulong(udata, &end, 16);
local_green = xvt_str_parse_ulong(end, &end, 16);
local_blue = xvt_str_parse_ulong(end, &end, 16);
xvt_mem_free(udata);
...
19.3.7. Loading Fonts
You need to make sure that the fonts used by your application are
appropriate for the character codeset. For example, an application
localized for Japanese must use a Japanese font. XVT provides
several mechanisms for mapping fonts. The most straightforward
method is to use XRC font mapping. Using XRC font or font_map
statements, you can easily define fonts external to your application.
Use calls to xvt_res_get_font to load fonts in your application at
runtime.

See Also: For details on XVT logical fonts, see section 15.3 in Chapter 15,
Fonts and Text.
For more on the font and font_map XRC statements, refer to the XVT
Portability Toolkit Reference.

Localization

19.3.8. Generalizing GUI Objects Positions and Sizes
If you are using XRC to define your GUI objects, much of the work
involved in externalizing your size and position data (XVT rectangle
type RCT and point type PNT) is done. However, for data that is not
associated directly with a particular GUI object, which must be used
after an object is created, or which is used for drawn objects, you
may additionally need to provide algorithms for modifying sizes and
positions at runtime.

XVT does not support a specific statement for location or dimension
data in XRC (other than window, dialog, and control creation
rectangles); however, you may use userdata statements to define
external size and position references.

See Also: For more information on rectangles and points, see Chapter 10,
Coordinate Systems.
For more information on XRC user data, see the userdata XRC
statement in the XVT Portability Toolkit Reference.

Example: This example demonstrates how an XVT rectangle may be stored
externally, obtained from a single window resource userdata
statement, and used to set the size of a window (implemented for a
single-byte character codeset):

XRC file:
...
window POSITION_WIN_101 XRC_RECT(50,50,100,200) \
19-47

“Position Test” doc size \
userdata “100 200 150 350” /* rectangle data */

...

These rectangles now may be modified easily for other locales.

Source code file:
...
WINDOW win;
char* udata, end;
RCT local_rct;
...
udata = xvt_res_get_win_data(POSITION_WIN_101, 0, 0);
local_rct.top = xvt_str_parse_ulong(udata, &end, 10);
local_rct.left = xvt_str_parse_ulong(end, &end, 10);
local_rct.bottom = xvt_str_parse_ulong(end, &end, 10);
local_rct.right = xvt_str_parse_ulong(end, &end, 10);
xvt_mem_free(udata);
xvt_vobj_move(win, &local_rct);
...

XVT Portability Toolkit Guide

19-48

19.4. Localizing XVT Applications
Once you have internationalized your XVT application, localizing it
is very straightforward. There are several tasks involved in
localizing your XVT application:

• Setting the operating/windowing system environment and the
character codesets for the target locale

• Translating literal strings to the locale using appropriate
character codesets

• Substituting colors, images, and icons
• Setting positions and sizes for GUI objects
• Initializing the application to the proper locale
• Compiling localized resources and help text

19.4.1. Selecting the Environment
Before adapting your resource and help files, you must select a
character codeset that supports the target language. In making this
decision, evaluate the language characters that must be represented,
the fonts that support these characters, and the relative availability
of these character codesets and fonts on your target windowing and
operating systems.

Caution: Make sure that you have set the proper configurations of the
operating and windowing systems for the locales you need
to support.
See Also: Refer to your native platform documentation for more information
on system setup for locale.
Different codesets used on the various platforms that XVT supports
are listed in section A.2 in Appendix A.

19.4.2. Translating Strings
Any strings that may be displayed to your users are candidates for
language translation. These include, but are not limited to, menu
item titles, keyboard accelerators and mnemonics, window titles,
dialog titles, control titles, text and mnemonics, error messages, and
help topics and text. If you have internationalized your XVT
application (as described in section 19.1.1.2 on page 19-3 and again
in section 19.3 on page 19-34), then this text should exist in one of
several types of files which will require translation:

• Application resource files, or

Localization

• Application include files (which contain only specific
localization data to be included in a resource file),

• Application help source text files, and
• XVT resource files, default help text files, and error message

file (for locales not translated and provided by XVT)

Note: Note that menu and control mnemonics and menu accelerators
cannot include multibyte characters.

To translate locale-specific text, you must invoke a text editor which
supports the character codeset and corresponding fonts that will be
used by your XVT application. (Some vendors offer editors which
simultaneously support multiple character codesets.)

You will need to maintain a copy of each file for each locale you
need to support. Alternatively, you may be able to keep a single copy
of each file with #ifdef’d resources for each locale. However, this
alternative is only possible if your target locales are supported by the
same character codeset.

Translating strings directly in XVT-Design only works in target
environments where XVT-Design is compatible with the character
codeset and can properly display translated strings.

If you have used the strscan utility with XVT-Design, then translating
resource strings requires modification to the file strres.h.

γ

19-49

19.4.2.1. Setting Special Format Strings
If you have any locale-specific format strings, you must review the
parameters for these strings (as described in section 19.3.4 on page
19-43), and adjust the format in your resource files to match the
requirements of your target locale.

XVT Portability Toolkit Guide

19-50

19.4.2.2. Using Standard XVT Resource, Default Help and Error
Message Files
XVT provides localized versions of its standard resource text and
help source text for U.S. English, German, French, Italian, and
Japanese (see section 19.1.2.2 on page 19-15). These localizations
are encapsulated in include files referenced by XVT XRC and help
source text files. You may control the inclusion of these files by
defining a LANG_* constant on the command line for xrc or helpc,
or by defining the constant in your source files.

XVT recommends using the U.S. English files as the basis for your
translation. All of the text characters used in English are in the
ISO 646 invariant character codeset, and your translation will
merely require a replacement of the XVT text strings with strings for
your target language. Characters outside of the invariant set may not
be properly displayed in the editor you use for translation.

If XVT has not provided files for your target locale, follow these
steps for localizing standard XVT files:

1. Translate all strings in the file uengasc.h (located in the
...include directory) to your target locale. The standared XRC
resources file uengasc.h contains data used internally by the
PTK. (Remember to adjust any object sizes and positions to
reflect changes in size of the translated text—for details, see
section 19.4.4 on page 19-51).

2. If you are using the online hypertext help system, translate the
standard XVT help text in file hengasc.csh.
3. If your users will be exposed to any error messages from the
error handling facility, translate the text in file
ERRCODES.TXT to your target locale.

4. Rename your files according to the naming conventions
described in section 19.2.1 on page 19-18.

5. Following the conventions in section 19.2.1, add code to the file
xrc.h to handle the LANG_* variable for your target locale. For
example, add the lines:

#elif defined(LANG_DAN_IS1) /* Danish XVT/XM */
#include "udanis1.h"
#elif defined(LANG_DAN_MRMN) /* Danish XVT/Mac */
#include "udanmrmn.h"
#elif defined(LANG_DAN_W52) /* Danish XVT/Win32 */
#include "udanw52.h"

before the code that includes the U.S. English default file:

Localization

#else
#include "uengasc.h" /* Default English (ASCII) */
#endif

See Also: Refer to Appendix A for a complete list of language and character
code abbreviations.

19.4.3. Replacing Colors and Graphics
Be sure to replace any locale-sensitive colors and graphics (drawn,
bitmaps, icons, or images) with ones appropriate to your target
locale.

See Also: For more information on externalizing colors and graphics (to
simplify the process you use when localizing your XVT
applications), see section 19.3.6 on page 19-45.
To see hundreds of examples of international symbols used in
various fields of endeavor, refer to Symbol Sourcebook: An
Authoritative Guide to International Graphic Symbols, by Henry
Dreyfuss, published by Van Nostrand Reinhold, New York, N.Y.,
1984.

19.4.4. Adjusting Object Sizes and Positions
One of the most tedious aspects of adapting your internationalized
application to a particular locale can be adjusting the sizes and
positions of GUI objects and drawn objects. This includes adjusting
the creation rectangles for windows, dialogs and controls.
19-51

Unfortunately, there are no simple solutions for adjusting these
creation rectangles in your XRC files. Correcting the sizes and
positions probably will require several iterations of compiling the
XRC file, executing the application in the required environment to
see how graphic objects look in relation to translated strings and to
each other, and then editing the XRC file to adjust the sizes.

One alternative is to calculate sizes and position at runtime based on
the font size, text width (in pixels, not characters or bytes) and other
characteristics of the localized object.

See Also: For more information on extracting position and size data from your
source code, see section 19.3.8 on page 19-47.

XVT Portability Toolkit Guide

19-52

19.4.5. Using XVT’s Utility Programs to
Write Localized Applications
XRC files and the help source text files are compiled (via xrc and
helpc respectively) into binary resource files. And, although the
methods differ, each of these binary files can be associated with your
XVT application at startup time or runtime. This means that a
program executable can be the same in all environments and only the
binary resource files have to be customized for a target locale.

When running xrc or helpc, you will need to make sure that the
correct header files for your locale are available and that you have
defined a LANG_* constant in the source file, or on the command line,
to include the localized header file version for your target locale.

Caution: To produce output consistent with the target locale’s character
codeset, xrc and helpc should be executed on platforms where the
character codeset is properly installed. This is especially necessary
when the target platform is using a multibyte character codeset.

Localization

19.4.5.1. xrc
Tip: To run the resource compiler and include German default XVT

resources for an XVT/Win32 application, use a command line
similar to the following:

xrc -r rcwin -I..\..\include -DLANG_GER_W52
-DLIBDIR=.\..\..\lib sample.xrc

Using this command line will cause the file ugerw52.h (which is the
XVT-supplied German translation of the default resource file) to be
included in your resources.

Implementation Note: XRC resource (source) files are portable between XVT-supported
platforms if the target character codesets are compatible.
Specifically, characters used in the resource files must come from
the invariant character codeset. U.S. English and Japanese Shift-JIS
are generally the only two languages and character codesets for
which this is true.

See Also: For a complete list of XRC resource compiler options, refer to the
XVT Portability Toolkit Reference.
For a list of LANG_* constants supported by XVT, see section 19.2.1
on page 19-18.

19.4.5.2. helpc
Tip: To run the help compiler and include German default help topics for

an XVT/Win32 application, use a command line similar to the
19-53

following:
helpc -f win -I..\..\include -DLANG_GER_W52

sample.csh

Using this command line will cause the file hgerw52.h (which is the
XVT-supplied German translation of the default help topics file) to
be included in your help source.

Implementation Note: Help source text files and the binary help files generated by helpc
are portable between XVT-supported platforms if the target
character codesets are compatible. Specifically, characters used in
the help source files must come from the invariant character
codeset.) U.S. English and Japanese Shift-JIS are generally the only
two languages and character codesets for which this is true.

See Also: For a complete list of helpc compiler options, refer to the
XVT Portability Toolkit Reference.
For a definition of the invariant character codeset and other
localization terminology, see section 19.1.1.3 on page 19-9.

XVT Portability Toolkit Guide

19-54

For a list of LANG_* compile constants supported by XVT, see Table
19.2 on page 19-19.

19.4.6. Localizing the XVT Portable Help Viewer
To use the standalone version of the XVT portable help viewer
(helpview) with a localized XVT application, follow these steps:

1. Localize the standard XVT resource and help text files as
described in section 19.4.2 on page 19-48. These standard files
are included by helpview.xrc, the help viewer resource file.

2. Compile the help viewer resource file helpview.xrc in the
...src\helpview directory. For example:

xrc -r win -i..\..\include -dLANG_DAN_W52
helpview.xrc

Following the instructions in the XVT Platform-Specific Books,
create a native resource file for the help viewer on your
platform. Name the resource file according to the convention:

helpv<3 character language>.<extension>

A complete list of the <3 character language> abbreviations may be
found in Appendix A. The <extension> is platform specific. For
example (with Danish):

XVT/XM: helpvdan.uid
XVT/Mac: helpvdan.rsrc
XVT/Win32: helpvdan.dll
3. In the directory which contains your application executable,
create a help viewer language configuration file helpview.lng.
This file contains a single word of text—the name of the
language of your target locale. The language name may be any
language from the list in Appendix A.

4. When your application invokes helpview, the PTK uses the
language name defined in helpview.lng to determine the correct
resource file to bind with helpview.

Caution: If any of the following conditions are not met, the PTK uses the
default U.S. English resource file:

• the file helpview.lng is present in the directory that contains
helpview

• the language name is recognized

Localization

• the corresponding resource file is present in the directory
required for resources by your platform (see Installing XVT
Development Solution for C for your platform for details)

Note: The bound version of the XVT help viewer and native help viewers
do not require these special steps.

19.4.7. Selecting the Environment and Initializing
the Application
The startup procedure for a localized XVT application is very
similar to a single-locale XVT application. However, in addition to
other attributes, your localized application must notify the PTK that
it is multibyte aware. The application does this by setting the value
of the attribute ATTR_MULTIBYTE_AWARE to TRUE.

Select the resource file to be used by setting the value of the
attribute ATTR_RESOURCE_FILENAME. The application name
and the task window title are localized by setting the attributes
ATTR_APPL_NAME_RID and ATTR_TASKWIN_TITLE_RID.

The application name and task window title in the XVT_CONFIG
structure passed to xvt_app_create are overridden by localized strings
obtained from resources. ATTR_APPL_NAME_RID and
ATTR_TASKWIN_TITLE_RID set the resources IDs from which to
obtain these strings.

If you have created a locale-specific error file (ERRCODES.TXT),
19-55

use the ATTR_ERRMSG_FILENAME attribute (as you would the
ATTR_RESOURCE_FILENAME attribute), to override the default
filename before xvt_app_create is called.

See Also: For more information on binding resource files to your application,
see section 19.2.7 on page 19-32.
For more information on locale-specific names for the error file, see
section 19.2.1 on page 19-18.

XVT Portability Toolkit Guide

19-56

Example: This example code demonstrates how to select locale files and set
configuration strings at application startup. In this example, the
locale name is read from an external file (for portability with
XVT/Mac applications). You also may want to consider allowing
your users to set the locale from the command line at application
startup (by processing the values of argc and argv).

Source code:
#include “sample.h”
#include “xvt.h”

BOOLEAN XVT_CALLCONV1 select_resources(void)
{

FILE* file;
char buffer[128];

file = fopen(“sample.opt”, “r”);

if (!file)
return FALSE;

memset(buffer, 0, 128);

if (fgets(buffer, 127, file) == NULL) {
fclose(file);
return FALSE;
}

/* determine locale and set resource file */
if (xvt_str_find_substring(buffer,

“JAPANESE”)) {
xvt_vobj_set_attr(NULL_WIN,

ATTR_MULTIBYTE_AWARE, TRUE);

xvt_vobj_set_attr(NULL_WIN,

ATTR_RESOURCE_FILENAME,
(long) JAPANESE_RESOURCE_FILE);

}
else if (xvt_str_find_substring(buffer,

“USENGLISH”)) {
xvt_vobj_set_attr(NULL_WIN,

ATTR_RESOURCE_FILENAME,
(long) USENGLISH_RESOURCE_FILE);

}
else {
/* no locale found */
fclose(file);
return FALSE;
}

/* set localized application name */
xvt_vobj_set_attr(NULL_WIN,

ATTR_APPL_NAME_RID,
SAMPLE_APPL_NAME_RID);

Localization

/* set localized task window name */
xvt_vobj_set_attr(NULL_WIN,

ATTR_TASKWIN_TITLE_RID,
SAMPLE_TASKWIN_TITLE_RID);

fclose(file);
return TRUE;

} /* end select_resources */

int XVT_CALLCONV1 main(int argc, char *argv[])
{

static XVT_CONFIG config;
...
if (select_resources()) {
/* application name and task window name

will be obtained from resources */
config.appl_name = “\0”;
config.taskwin_title = “\0”;
}
else {
config.appl_name = “sample”;
config.taskwin_title = “Sample Program”;
}
config.base_appl_name = “sample”;
config.menu_bar_ID = SAMPLE_MENUBAR;

xvt_app_create(argc, argv, 0L, task_eh, &config);
...

}

Application header file (sample.h):
#include “xvt.h”
...
19-57

#if (XVTWS == WIN32WS) /* XVT Win32 platforms */
#define USENGLISH_RESOURCE_FILE “useng.dll”
#define JAPANESE_RESOURCE_FILE “japanese.dll”

#elsif (XVTWS == MACWS) /* XVT/Mac */
#define USENGLISH_RESOURCE_FILE “useng.rsrc”
#define JAPANESE_RESOURCE_FILE “japanese.rsrc”

#elsif (XVTWS == MTFWS) /* XVT/XM */
#define USENGLISH_RESOURCE_FILE “useng.uid”
#define JAPANESE_RESOURCE_FILE “japanese.uid”

#endif
...
#define SAMPLE_APPL_NAME_RID 170
#define SAMPLE_TASKWIN_TITLE_RID 171

U.S. English XRC resource file:
#include “sample.h”
...
string SAMPLE_APPL_NAME_RID “sample”
string SAMPLE_TASKWIN_TITLE_RID “U.S. English Sample”

XVT Portability Toolkit Guide

19-58

Japanese XRC resource file:
#include “sample.h”
...
string SAMPLE_APPL_NAME_RID “...”
string SAMPLE_TASKWIN_TITLE_RID “...”

Memory Allocation

20
MEMORY ALLOCATION

This chapter contains information about the following memory
allocation topics:

• Application and global heaps
• XVT substitutes for malloc, realloc, and free

• Allocating memory on the global heap
• XVT’s portable ATTR_MEMORY_MANAGER attribute
• Resource memory allocation

20.1. Application and Global Heaps
XVT portably provides access to two types of memory heaps:

20.2.
20-1

application and global. The application heap is similar to memory
allocations done through the standard C functions malloc, realloc, and
free. However, XVT provides and recommends alternatives to those
functions. The Toolkit uses these alternatives for its memory
allocations: xvt_mem_alloc, xvt_mem_realloc, xvt_mem_free. (See section
20.2, next.)

XVT Substitutes for malloc, realloc, and free
Internally, the XVT libraries never call the standard C functions
malloc, realloc, or free directly. Instead, they call
xvt_mem_alloc, xvt_mem_realloc, or xvt_mem_free.
A main purpose of the xvt_mem_* functions is to control
precisely how XVT libraries allocate memory internally.

For most XVT implementations, the XVT memory functions are
identical to the standard C functions. That is, xvt_mem_alloc is
a synonym for malloc.

XVT Portability Toolkit Guide

20-2

20.3. Allocating Memory on the Global Heap
Tip: To allocate memory on the global heap:

Call xvt_gmem_alloc or xvt_gmem_realloc.

Unlike their counterparts, xvt_mem_alloc and xvt_mem_realloc, these
XVT functions return an object of type GHANDLE. Such an object
remains valid while your program is running, although the allocated
storage to which it refers can be moved around by the memory
management system, if it needs to.

For portability reasons, you should not pass a GHANDLE to another
process (task), or thread, nor should you write it to a file for use by
a later invocation of the program that wrote it (as with all dynamic
allocations).

Tip: To access the memory referred to by a GHANDLE:
Lock it with xvt_gmem_lock, which returns a pointer.

Tip: To unlock memory when you’re done using it:
Call xvt_gmem_unlock.

This call invalidates the xvt_gmem_lock pointer, so you must make
sure you don’t use it (for safety, set the pointer variable you’ve been
using to NULL). When you call xvt_gmem_lock again, you might
get a different pointer.

Tip: It’s best to keep global memory blocks locked only for brief

2

intervals, in order to give the system maximum flexibility to manage
memory.

Tip: To free a global memory block:
Call xvt_gmem_free.

Tip: To obtain the size of a global memory block:
Call xvt_gmem_get_size.

0.4. ATTR_MEMORY_MANAGER Attribute
You can write customized memory management functions for
your applications. To use them, you register the functions by means
of XVT’s portable ATTR_MEMORY_MANAGER attribute.

The ATTR_MEMORY_MANAGER attribute contains the addresses of
the system-wide memory management functions that are called

Memory Allocation

when the application invokes xvt_mem_alloc, xvt_mem_free,
xvt_mem_realloc, and xvt_mem_zalloc. This attribute is the address of a
structure of type XVT_MEM (defined in xvt_type.h).

Example: The following code sets the memory management functions, which
must be done before xvt_app_create:

XVT_MEM my_functions = {my_alloc, my_free, my_realloc,
my_zmalloc};

xvt_vobj_set_attr(NULL_WIN, ATTR_MEMORY_MANAGER,
(long)&my_functions);

If your application does not set the ATTR_MEMORY_MANAGER
attribute, the system automatically sets it to default values at system
initialization time.

Note: You should remember to use the XVT_CALLCONV1 macro in the
prototypes and headers for your memory management functions.

See Also: For more information about ATTR_MEMORY_MANAGER, see the
XVT Portability Toolkit Reference.

20.5. Resource Memory Allocation
Many XVT objects or resources have their own dedicated memory
allocation functions. For example, xvt_cb_alloc_data and xvt_cb_free_data
respectively allocate and free data for the clipboard. If objects
provide memory functions, you should use these functions, and only
these functions, to allocate and free memory.
20-3

Some XVT objects or resources allocate memory as a side effect
of the creation of the object. For example, xvt_image_create
and xvt_palet_create must be accompanied by calls to xvt_image_destroy
and xvt_palet_destroy, respectively.
The application is responsible for cleaning up its memory.

Caution: On some native platforms supported by XVT, memory cleanup on
application termination is an important consideration. You should
not assume that terminating
an application automatically returns to the heap any of the memory
consumed by that application. Make sure that you free all memory
and resources requested by the application.

XVT Portability Toolkit Guide

20-4

Diagnostics and Debugging

21
DIAGNOSTICS AND DEBUGGING

This chapter discusses diagnostic and debugging aids that can help
you identify and handle code errors. XVT provides the following
tools for dealing with errors:

• General error checking techniques
• Error signaling with error codes
• Error handler functions
• An errscan tool
• Error definition and message files
• Error dialogs for reporting errors and warnings

See Also: For additional information about the errscan tool, refer to section

21.1.
21-1

21.4 on page 21-6.

XVT Error Checking Techniques
To help you program reliably and defensively, XVT uses these
general techniques for checking errors:

• Validating function input arguments
• Indicating errors in function return values
• Calling error handlers (special functions called whenever

an error is encountered)

21.1.1. Arguments and Return Values
The XVT API validates all function arguments, and rejects any
improperly requested operation. In addition, XVT often indicates
that an error occurred by using a function’s return value, such as
returning a NULL pointer or a BOOLEAN value to show that an
operation failed.

XVT Portability Toolkit Guide

21-2

21.1.2. Error Handlers
If XVT detects an error during argument validation or while
processing a request, it reports the problem to one or more error
handlers. Error handlers post and/or record error messages and tell
the program that an error occurred. Sometimes they even perform
the cleanup necessitated by an unsuccessful operation.

XVT provides a default “last chance” error handler. However,
the application can register other error handlers that are called
before this one.

See Also: For more information about error handlers, see section 21.3 on page
21-4.

21.2. XVT Error Signaling
Whenever XVT encounters an error, it signals this error to one or
more error handlers. Except in the case of fatal errors, XVT
continues after the signal, and typically also returns some indication
of failure, such as a NULL pointer. XVT supplies two function-like
macros to signal errors:

• xvt_errmsg_sig
• xvt_errmsg_sig_if

You can use these functions to produce arbitrary, application-
generated messages. You can then use the errscan tool to extract
such messages from the your source code files and generate both
an error message file and a file containing error ID #defines.
See Also: For more information about xvt_errmsg_sig and xvt_errmsg_sig_if, see the
XVT Portability Toolkit Reference.
For more information about errscan, see section 21.4 on page 21-6.

Diagnostics and Debugging

21.2.1. Error Codes (XVT_ERRID)
When XVT signals an error, it identifies the error with an error
code (of type XVT_ERRID). This error code is used to retrieve an
appropriate error message from the error message file. It also allows
the error handler to deal with messages selectively. Each error code
has three components:

• Major category
• Minor category
• Message number (within the minor category)

When you develop an application, you can insert the following
xvt_errmsg_def_* calls in the application to define categories:
xvt_errmsg_def_mjr

Defines new major error categories. To create a major category,
add a suffix to the "ERR_" string: "ERR_xxx".

xvt_errmsg_def_cat
Defines minor categories. To create a minor category, add a
suffix to the major category: "ERR_xxx_yyy".

xvt_errmsg_def_std
Defines undivided standard error messages. To create a special
error message, add a suffix to the minor category:
"ERR_xxx_yyy_zzz". For example: ERR_ARG_VALUE_TOOLOW.

When the errscan tool processes the xvt_errmsg_def_* and
xvt_errmsg_sig functions, it generates error codes automatically.
21-3

XVT provides several xvt_errid_* macros to define error codes and to
access and compare their components.

21.2.2. Types of Errors
Error signaling functions, such as xvt_errmsg_sig, classify errors by
their level of severity. Error message handlers can then use these
severity classifications to decide how to handle a particular error
signal:
SEV_WARNING

The requested operation can be performed, but some corrective
action is required.

SEV_ERROR
The requested operation cannot be performed, but the
application can continue.

SEV_FATAL
Execution cannot continue; the application must terminate.

XVT Portability Toolkit Guide

21-4

Note: A SEV_ERROR often means that the operation has been skipped,
which can adversely affect application behavior.

21.2.3. Error Message Objects
Each error message signaling call (xvt_errmsg_sig) creates an
error message object (of type XVT_ERRMSG), which is passed to
individual error handlers. This object exists only during the duration
of the call to xvt_errmsg_sig. When that function terminates, the error
object disappears.

Error handlers can make inquiries about the object, to find out its
signal severity, error code, source filename and line number, or
the message associated with the error category (major, minor, or
complete error code).

See Also: For more information, see the xvt_errmsg_* functions in the
XVT Portability Toolkit Reference.

21.3. Error Handlers
Whenever xvt_errmsg_sig signals an abnormal condition (that is, an
error) the XVT error messaging system calls an error handler
function. An error handler is defined by a typedef
XVT_ERRMSG_HANDLER. Its first argument is an error message
object (of type XVT_ERRMSG) encapsulating all information about an
error.

An error handler can do one of two things:

• Intercept the error signal. The error handler returns TRUE,

indicating that it has processed the error. The error messaging
system does not try the next error handler in the stack.

• Pass the signal to another handler. The error handler returns
FALSE, indicating that it has chosen not to handle the error.
The error messaging system tries the next error handler in
the stack.

21.3.1. Error Handler Hierarchies
Your application can establish a hierarchy of error handlers:

• Stacked error handlers specific to a window event handler
• A permanent application event handler
• The XVT-supplied “last chance” event handler

Diagnostics and Debugging

At each level of this hierarchy, an error handler can either intercept
the error message (i.e., post a dialog, write the message to a file, or
simply hide the error), or pass the error message to the next handler
in the hierarchy.

To prevent infinite recursion, any errors signaled from within the
error handler (for example when calling the XVT API) are delivered
only to remaining handlers in the hierarchy.

21.3.1.1. Stacked Error Handlers
Stacked error handlers have a scope limited to a particular window
event handler call. You must explicitly push them onto the error
handler stack (with xvt_errmsg_push_handler) and pop them off
it (with xvt_errmsg_pop_handler).

If you fail to remove (pop) such handlers from the stack before
returning from the window event handler, you’ll receive a warning,
and the handlers will be removed automatically.

See Also: For more information about xvt_errmsg_pop_handler and
xvt_errmsg_push_handler, see the XVT Portability Toolkit Reference.

21.3.1.2. Application-supplied Error Handlers
XVT allows your application to register an application-supplied,
permanent error handler that is called immediately before the XVT-
supplied “last chance” error handler. You might do this for the
21-5

following reasons:
• To post customized error dialogs
• To hide (intercept) errors having a particular severity or class,

or certain specific error messages
• To hide (intercept) all errors that slip through previously

“pushed” error handlers
• To perform application-specific shutdown on fatal errors

Tip: To register a permanent application error handler:
Set the ATTR_ERRMSG_HANDLER attribute.

Tip: When you write an error handler, keep in mind that SEV_FATAL
errors require application termination. The error messaging system
terminates the application if the handler returns TRUE. Also, your
error handler must pay attention to E_UPDATE event processing.
Many XVT operations (such as posting error dialogs) are illegal
during an E_UPDATE, because they can cause endless recursive calls
to the error handler.

XVT Portability Toolkit Guide

21-6

See Also: For more information on ATTR_ERRMSG_HANDLER, see the
XVT Portability Toolkit Reference.
For more information on E_UPDATE, see section 4.3.3 on page 4-10.

21.3.1.3. The XVT Error Handler
The XVT-supplied “last chance” error handler appends all messages
to the debug file (if present), and posts an appropriate dialog. The
dialog provides the following information:

• Error message
• Name of the XVT API call
• Source filename and line signaling an error

See Also: For more information about the debug file, see section 21.5.3 on
page 21-8.
For more information about error dialogs, see section 21.6 on page
21-8.

21.4. XVT’s errscan Tool
XVT supplies an errscan tool, which can examine your application
code and perform the following operations:

• Find all instances of error signaling (xvt_errmsg_sig and
xvt_errmsg_sig_if calls)

• Find all predefined error messages (defined with
xvt_errmsg_def_* macros)
• Generate the error message text file ERRCODES.TXT
• Generate the error codes definition file xvt_perr.h

The benefit of using the errscan tool is that you don’t have to
manually collect and maintain a list of error codes and associated
messages.

The errscan tool uses the message suffix and number supplied by
each xvt_errmsg_sig or xvt_errmsg_def_* macro to build an
error code #define. Consequently, the suffix and number must be
unique within a given message category.

errscan does not process multibyte characters, but its output can be
localized. In other words, you must run errscan on single-byte
character strings and then localize the output to the correct locale.

The errscan tool warns you of any duplication and/or syntax errors.
However, its syntax checking is not as sophisticated as a compiler’s.

Diagnostics and Debugging

In particular, errscan does not use the cpp pre-processor, and it
makes several assumptions about the error signaling call.

You can build errscan either as a command line utility or as an
interactive application. XVT provides errscan both as a source file
and an executable, in the directories ...src/errscan/errscan.c and
...bin/errscan.

Note: Source customers can also run errscan on XVT source code.

See Also: For information about using the errscan tool, refer to the
XVT Portability Toolkit Reference.
To learn how to build errscan, see the XVT Platform-Specific Book
for your particular platform.
For information about xvt_errmsg_sig and xvt_errmsg_sig_if, refer to
section 21.2 on page 21-2.

21.5. Error Files
XVT provides two error definition header files and an error message
file. In addition, your application can write error tracing information
into a temporary debug file.

21.5.1. Error Header Files
XVT provides header files that contain error definitions.
xvt_perr.h
21-7

Defines a #define constant for each XVT_ERRID used by a
particular (that is, platform-specific) XVT implementation.
The errscan tool generates this file, along with the error
message (text) file.

xvt_msgs.h
Defines a basic set of error categories and messages. This file
has no executable meaning; it merely serves as the message
definition source for the errscan tool. Source customers can
use this file to add new standard errors.

21.5.2. XVT Error Message File
All XVT-signaled messages are collected in an error message file,
ERRCODES.TXT. The error messaging system retrieves message
text from this file. This allows you to localize messages by
substituting translated text in the file.

If XVT can’t find an error message file, or if a particular message
is missing in the file, XVT uses a standard, hardcoded (English)

XVT Portability Toolkit Guide

21-8

message. Hardcoded message text is available only for a limited set
of basic error categories and messages.

If no message file or hardcoded messages exist, individual messages
are represented by a message number, such as "MSG (7/3)3556". In this
encoding, (7/3) indicates the message category number (major/
minor), followed by the message number in the major/minor
category.

You can ship the XVT-supplied file ERRCODES.TXT with your
application. Or, if your customers might not understand the XVT
error messages, you can provide a subset or translation of this file.

Tip: To redefine the location of the error message file:
Set the ATTR_ERRMSG_FILENAME attribute.

21.5.3. Debug File for Error Tracing
To help with debugging, you can write error tracing information into
a temporary debug file. XVT supplies a function and a macro to
append information to the debug file:

• xvt_debug_printf (function)
• xvt_debug (macro)

The XVT-supplied “last chance” error handler also writes error
messages to this same debug file (if the file is present).

Tip: To redefine the location of the temporary debug file:
Set the ATTR_DEBUG_FILENAME attribute.

2

See Also: For more information about xvt_debug and xvt_debug_printf,
see the XVT Portability Toolkit Reference.

1.6. Error Dialogs
When a program encounters an error, it can either perform some
recovery, or tell the user about the error (if the error resulted from
incorrect use of the program). XVT provides standard dialogs for
reporting warnings, errors, and fatal errors. You can call them with
these functions:

xvt_dm_post_warning
xvt_dm_post_error
xvt_dm_post_fatal_exit

You can also use other dialogs or xvt_scr_beep to notify the user
of an error.

Diagnostics and Debugging

See Also: For more information about xvt_dm_post_warning, xvt_dm_post_error,
xvt_dm_post_fatal_exit, or
xvt_scr_beep, see the XVT Portability Toolkit Reference.
21-9

XVT Portability Toolkit Guide

21-10

Hypertext Online Help

22
HYPERTEXT ONLINE HELP

XVT’s online help feature provides a powerful, flexible, hypertext-
based help system for your applications. The online help feature
includes these key elements:

• A hypertext viewer, integrated with the XVT Portability
Toolkit

• Complete text-formatting features, including multiple fonts
and styles

• Easy association between all GUI objects and specific help
topics

• Bitmap images embedded in help text
• Support for native help display facilities

22.1.
22-1

Help System Components
XVT’s help system contains the following software components:
Help Text Source File(s)

One or more plain-text files containing the help information
itself, along with formatting commands, hypertext links, and
other information that defines how the help information is
presented to your application’s user.

Help Compiler (helpc)
A compiler that converts help text source files into several other
file formats, including a portable, XVT-defined format, and
several platform-specific formats.

Portable Binary Help File
A portable, machine-readable file containing the help
information. The XVT help viewer displays this file during
application execution.

XVT Portability Toolkit Guide

22-2

XVT Help Engine
A portion of the XVT Portability Toolkit that handles help-
related event processing, manages context information, and
invokes the help viewer(s) to display the help text.

XVT Help Viewer
A viewer that presents the help information to the user. This
viewer is available on all XVT platforms. The help viewer can
either be added to your application, or used as a standalone
application.

The relationship of the various components of the XVT help system
is shown in Figure 22.1.

Help Text Source
File(s)

XVT Help
Compiler

Portable Binary
Help File

XVT Help Viewer

XVT Help Engine

Native Binary Native Help

Native Help Text
Source File

Native Help

Your Application
Figure 22.1. Help system components

Some GUI platforms provide their own help viewers. On these
platforms, the XVT help system includes these additional
components:
Native Help Text Source File

A platform-specific file that contains the help information itself,
as well as formatting commands and hypertext links. Usually
you won’t have to use these files directly.

Native Help Compiler
A compiler that converts native help text source files into files
readable by the native help viewer. This utility program is
supplied with your native development tools.

Help File ViewerCompiler

Hypertext Online Help

Native Binary Help File
A platform-specific, machine-readable file containing the help
information. This file is displayed by one of the native help
viewers supported by the XVT help system.

Native Help Viewer
A viewer that presents help information to application users,
using the native window system’s help viewer.

Note: Currently, XVT supports the native help systems for Win32.

22.2. XVT Help Viewer
The help viewer serves as the interface between users and the
available help information. In other words, the help viewer is the
part of the help system that users see. This section describes how
the XVT help viewer operates, from the application user’s point
of view.

When users invoke help, they can see help information displayed in
two kinds of windows. Users can browse among topics, search for a
specific topic, or navigate along a topic thread. They can also insert
a bookmark into a topic to mark it, and copy or print topics.

See Also: For information about invoking help, see section 22.3 on page 22-9.

22.2.1. Help Windows
22-3

The online help system displays information in two kinds of
windows:

• Topic windows
• Pop-up windows

Both window types can display help text and bitmap graphics.
However, the two types differ in how the user interacts with them
and in their appearance. Topic windows offer more extensive
navigation control and decorations, while pop-up windows have
minimal user-interface features.

22.2.1.1. Topic Windows
Topic windows display primary help topic information—that is, the
main help text itself. Topic windows have the following features:

• Text and graphics display
• On-screen controls and keyboard commands for moving

through the topic information

XVT Portability Toolkit Guide

22-4

• Browsing controls for moving between logically related
topics, like pages in a book

• Embedded hypertext links and hot buttons in the topic text,
which have a different appearance from plain text (and each
other)

• A search facility for locating other topics
• A dynamically maintained topic thread, a list of topics

viewed by the user
• Navigation controls for moving forward and backward

through the list of topics in the topic thread
• Bookmarks that can be set by the user, and controls for

navigating to these marked topics
• Copying of topics to the system clipboard
• Printing of topics

Once a topic window has been opened, the user must explicitly
dismiss it.

22.2.1.2. Pop-up Windows
Pop-up windows display short-term information, such as glossary
definitions and hot button topics. Since pop-up windows quickly
display short help topics, they have a limited number of features
as compared to topic windows:

• Limited user input—no navigation controls

• Text and graphics display (although on some platforms the

time required to display a graphic image can reduce the
convenience of pop-up windows)

Unlike topic windows, which the user must explicitly dismiss,
pop-up windows are dismissed when any key event or mouse
click occurs.

Hypertext Online Help

22.2.2. Navigation
Help topic windows contain navigation controls to enable
application users to move from one help topic to another, as shown
in Figure 22.2.

Figure 22.2. Navigation controls in a topic window

The topic window contains a scrolling text pane that displays the
help topic text. The user can move and resize the topic window using
standard native document-window border decorations.
22-5

The topic window contains several push buttons for navigating from
topic to topic, and invoking other help system dialogs:
Search

Invokes the Search dialog, with which the user can search for
help information by topic name or by keyword (see below).

Go To
Invokes the Go To dialog, with which the user can navigate to
the help index, glossary, table of contents, or marked topics
(see below).

Mark
Marks the current topic, and adds its name to the list of
Bookmarks in the Go To dialog. If the current topic is
already marked, clicking this button removes the mark.

Back
The help system maintains a topic thread, a list of topics that
have been displayed in the topic window. Clicking this button

XVT Portability Toolkit Guide

22-6

moves to the previously viewed topic in the list, and displays
it in the topic window.

Forward
Moves to the next topic in the help system’s list of displayed
topics, and displays the topic in the topic window. This button
is disabled until the Back button has been clicked at least once.

>>
Moves to the next logically related topic (the next topic in the
browse sequence), and displays it in the topic window.

<<
Moves to the previous topic in the browse sequence, and
displays it in the topic window.

Hypertext Online Help

22.2.2.1. Go To Dialog
Clicking the Go To button in a topic window opens a modal dialog,
as shown in Figure 22.3.

Figure 22.3. Modal Go To dialog

The buttons near the top of the dialog open a corresponding help
22-7

topic when clicked. If you are using the “application-bound” viewer
configuration, you can change the button names to suit your
application. The xvt_help.xrc resource file defines the Go To dialog
and button names.

The Bookmarks list box contains a list of topics that the user has
marked by clicking the Mark button in the topic window.

Tip: To return to a previously marked topic:

1. Select the topic name in the Bookmarks list.
2. Click Go to Mark.

-OR-
Double-click the topic name.

Tip: To dismiss the Go To dialog without changing topics:

Click Cancel.

See Also: For a comparison of application-bound and standalone help viewer
configurations, see section 22.4.1 on page 22-12.

XVT Portability Toolkit Guide

22-8

22.2.3. Searching
An application user can search for help topics with the Search
dialog; this dialog is shown in Figure 22.4. To invoke this dialog, the
user can either click the Search button in a topic window, or choose
Search from the Help menu.

Figure 22.4. Search dialog

Help topics are identified either by topic names or by keywords
(optional). Two radio buttons in the Search dialog determine which
of these appears in the Search Items list box, and thus how help

topics are displayed:
Topic Name

When this radio button is checked, the Search Items list box
displays all the topics in the help file. Double-clicking on a topic
name dismisses the dialog and opens the appropriate topic
window.

Keyword
When this radio button is checked, the Search Items list box
displays all keywords defined in the help file. Selecting one of
these keywords displays a list in the Matched Items list box of
all topics that contain this keyword.

Hypertext Online Help

22.3. Invoking Help
Application users can ask for help information in several ways. They
can get two kinds of context-sensitive help: spot or object-click help.
Or they can choose help topics from the Help menu. In addition,
your application can display help information programmatically.

22.3.1. Spot Help
Spot help is context-sensitive. It presents help information
associated with the GUI object that has focus. To invoke spot
help, the user presses a special key (often F1 or Help), or chooses
On Context from the Help menu.

Note: Some platforms cannot give focus to all control types; as a result,
spot help is not available for some controls on these platforms.

22.3.2. Object-click Help
Object-click help is also context-sensitive. It is similar to spot help,
but works in reverse—the user requests help by choosing Object
Click from the Help menu, then selecting the desired GUI object.
Help information is displayed for that object.

See Also: For more information on object-click help, refer to the XVT
Platform-Specific Book for your platform. (On many platforms,
object-click help is not consistent with the window manager’s
22-9

look-and-feel.)

XVT Portability Toolkit Guide

22-10

22.3.3. Menu Help
Menu help simply lets the user choose one of several help topics
from the Help menu. Some or all of following topics are placed
on the Help menu by default:

• On Context (for invoking spot help)
• Index
• Contents
• Tutorial
• Keyboard
• Object Click (for invoking the object-click method)
• Search (for invoking the search dialog)
• Using Help
• Version

The actual default menu items vary from platform to platform.

See Also: For the definitions of each platform’s Help menu, see the
platform-specific books and the xvt_help.xrc file.

22.3.4. Invoking Help Programmatically
The XVT help system automatically handles the previously
described methods of invoking help. However, you can also
display help information under control of your application.
For instance, when an error occurs, your application can display
a help topic describing the error and suggestions for resolving it.
Your application can easily display any help topic.

Tip: To display a help topic:

Call xvt_help_display_topic.

Hypertext Online Help

22.4. Adding Online Help to an Application

XVT-Design lets you quickly associate help topics with GUI
objects. In each attribute dialog for the GUI Objects you create with
XVT-Design, you can specify the appropriate help topic in the
dialog’s “Help Topic” list button.

This section describes how to add online help to your XVT-based
application. To add online help to your application, you would
follow these general steps:

1. Write a help text source file, a plain-text file that contains the
text for the online help information.

2. Add formatting commands to your help source file, using the
help system markup language commands.

3. Place definitions for symbolic names for the help topics in a
header file.

4. Compile your help source file with helpc, the help-text
compiler.

5. Add a Help menu to your application’s menu resource
definitions.

6. Add code to your application to open and close the compiled

γ

22-11

help file.
7. Add code to your application to associate help topics with GUI

objects.
-OR-
Create a help topic association file.

XVT-Design performs steps 5, 6, and 7 for you.

The following sections explain how to accomplish each of these
steps. They cover the following topics:

• Help viewers
• Header files
• Resource files
• Creating a help menu
• Opening a help file

γ

XVT Portability Toolkit Guide

22-12

• Associating topics with objects
• Disassociating topics from objects
• Event handling
• Displaying help topics
• Handling object-click help
• Modal dialogs and help

See Also: For detailed descriptions of all functions mentioned in this section,
see the XVT Portability Toolkit Reference.

22.4.1. Help Viewers
The XVT help system provides two different kinds of help viewers:
Application-bound viewers

An application-bound viewer has all its executable code and
resources integrated with your application’s executable file.

Standalone viewers
An application that is separate from your application’s
executable file.

From the application user’s point of view, both kinds of viewers
have the same appearance and behavior. Both use the same API
functions; the same application code handles either one. You
determine which viewer your application uses at link time, by
linking one of two object libraries with your application.

Note: The Win32 native viewer is a standalone viewer.
See Also: For information on libraries and linking for your particular
development platform(s), see the XVT Platform-Specific Books.

22.4.2. Header Files
Individual help topics are referred to by integer identifiers, which
you can put into a header file.

Tip: To define symbolic names for help topic identifiers:

Use #define statements in a header file.

Include this header file in any source-code file that refers to specific
help topics.

Hypertext Online Help

22.4.3. Resource Files
The xvt_help.xrc file contains XRC definitions of all resources used
by the help system. This file is included automatically when you
include xrc.h in your source files. If your application does not use
the help system, you can omit the help system’s resources from your
application.

Tip: To include the help system’s resources in your application:
#include the standard XVT resource header file, xrc.h.

Tip: To omit the help system’s resources from your application:

Define the symbol NO_HELP_RESOURCES before including
xrc.h, like this:

#define NO_HELP_RESOURCES

Note: If your application uses a standalone viewer, you should omit the
help system’s resources from your application. The application does
not need these resources, since they are present in the standalone
help viewer.

22.4.4. Creating a Help Menu

XVT-Design’s Menubar Editor includes the default help menu as a
standard menu that you can add to any menubar in your application.γ
22-13

The help system provides a default help menu that conforms to the
native style guidelines for each GUI platform. This menu’s resource
ID is DEFAULT_HELP_MENU. It is included in the default menubar.

Tip: To add the help menu to your resource file:

Use the predefined menu identifier DEFAULT_HELP_MENU
in your menubar. For example:

MENUBAR MY_MENUBAR
MENU MY_MENUBAR

DEFAULT_FILE_MENU
DEFAULT_EDIT_MENU
... /* your menus */
DEFAULT_HELP_MENU

XVT Portability Toolkit Guide

22-14

Tip: To omit the help menu from the default menubar:

Define the symbol NO_STD_HELP_MENU before including
xrc.h, like this:

#define NO_STD_HELP_MENU

22.4.5. Opening a Help File
Before your application can display any help topic information, you
must open a help file.

Tip: To open a help file:

Call xvt_help_open_helpfile while handling the
E_CREATE event for your application’s task window.

This function returns a help file descriptor of type XVT_HELP_INFO.
You should pass the value of this descriptor to all help functions that
require a XVT_HELP_INFO parameter.

Most applications only need to open the help file while handling
the E_CREATE event for the task window and close it while handling
the E_DESTROY event. If necessary, however, you can open and close
help files freely during the execution of you program. You can also
have more than one help file open at a time. Use multiple
XVT_HELP_INFO variables to distinguish the different files.

Tip: To close a help file when it is no longer needed:
Call xvt_help_close_helpfile.
Caution: You must close all open help files before your application
terminates.

See Also: For information on defining the help search path, see the description
of xvt_help_open_helpfile in the XVT Portability Toolkit Reference.

22.4.6. Associating Topics with Objects
If your application uses the context-sensitive help invocation
methods (spot help and object-click help), you must associate
specific help topics with the appropriate GUI object.

You do not have to create help topics and associations for all objects.
In some cases, such an association is not even desirable. For
instance, there is no point in associating a help topic with a WINDOW
that cannot be manipulated by the user.

Hypertext Online Help

Note: There are restrictions on the type of topics that can be associated
with a GUI object. Only topics defined with the HTOPIC format can
be associated, portably, with objects.

See Also: For more information on the HTOPIC format, refer to the
XVT Portability Toolkit Reference.

In XVT-Design, you can associate topics with any WINDOW or
MENU_TAG when you set the object’s attributes. XVT-Design
automatically inserts into the source code the correct function calls
to associate the topics with the GUI objects.

Tip: To programmatically associate a help topic with a WINDOW
(window, dialog, or control):

Call xvt_help_set_win_assoc.

Tip: To associate a help topic with a menu item:
Call xvt_help_set_menu_assoc.

Tip: To associate a help topic with any object:
Create an association table (see section 22.4.6.1).

22.4.6.1. Association Tables
As an alternative to calling xvt_help_set_win_assoc or

γ

22-15

xvt_help_set_menu_assoc, you can create associations between help
topics and objects in file-based association tables. An association
table is a text file that lists resource ID values and their associated
help topic ID. If your application uses more than one help file, each
file has its own association table.

Association tables require less application code, and are easier to
maintain since all topic/object associations are kept in one location.
However, you must remember to ship the association table file(s)
with your application.

XVT Portability Toolkit Guide

22-16

22.4.6.2. Association Table File Format
Association table files must be located in the same directory as the
help topic files. They must have the same name as the corresponding
help topic file, with the extension .csa.

You can place comments freely in association files. Any line
beginning with a space, Tab, or ‘#’ character is ignored.

Each line in the association table associates one help topic with one
GUI object. The lines have the following format:
<object type> <object id> <parent id> <topic id>

<object type>
One character that indicates the type of the GUI object:
M for menu, W for window, D for dialog, or C for control.

<object id>
The resource ID of the object.

<parent id>
The resource ID of the object’s parent window. If this field is
zero, the help topic is associated with all objects of the specified
object type and resource ID, regardless of their parent windows.

<topic id>
The identifier for the help topic to be associated with the object.

Note: All ID fields must be integers.

See Also: For more information on using the helpc compiler, refer to section
22.6 on page 22-23.

Hypertext Online Help

22.4.7. Disassociating Topics from Objects
During program execution, your application may need to change
which help topics are associated with GUI elements. For example,
when an error occurs, you might wish to remove the usual help topic
and replace it with a help topic that offers suggestions for recovering
from the error.

Tip: To remove the association between a GUI object and a help topic:
Call xvt_help_set_win_assoc, passing NULL_TID for the
topic identifier parameter.

Tip: To remove the help associations for a container and all the objects
it contains:

Call xvt_help_disassoc_all.

In most instances, disassociation occurs automatically. If you close
a window that contains child windows and/or controls, all help
topics for the container and its offspring are disassociated
automatically.

However, if you destroy a control without destroying its container,
you must explicitly remove its help-topic association, using
xvt_help_set_win_assoc.

22.4.8. Event Handling
22-17

The help system handles help-related user events automatically. In
most situations, your event handlers will never receive an E_HELP
event. XVT’s help system intercepts and processes these events
before your event handlers are called. This automatic handling of
events does not take place until after your application has opened
at least one help topic file.

22.4.9. Displaying Help Topics
In addition to letting the help system automatically handle help
requests, your application can explicitly display help topics.

Tip: To display a help topic:

Call xvt_help_display_topic.

Note: To be portable, the topic ID passed to this function must correspond
to an HTOPIC.

XVT Portability Toolkit Guide

22-18

See Also: For more information on the HTOPIC format, refer to the
XVT Portability Toolkit Reference.

22.4.10. Handling Object-Click Help
Normally, the application user invokes object-click help. However,
your application can also invoke it directly. Once object-click help
is invoked, the mouse pointer is trapped and events are consumed by
the help system. Object-click mode terminates when the user clicks
an object, or when your application explicitly terminates it.

Tip: To invoke object-click help mode:
Call xvt_help_begin_objclick.

Tip: To terminate object-click help mode:
Call xvt_help_end_objclick.

22.4.11. Modal Dialogs and Help
If your application uses the application-bound help viewer, you
cannot display help topic windows when a modal dialog is active.
Also, when a modal dialog is active, the application user cannot
interact with any help topic windows.

22.5. Help Source File Format
Help source files contain the following elements:
• Comments (optional)
• Preprocessor commands (optional)
• Header section
• Help text body
• Predefined help topic information

Each help file element is discussed in the following sections. To
provide portability across all XVT development environments,
help source files use a plain-text markup language for formatting.

Tip: To create your help source files:
Use any text editor or word processor capable of generating
plain text files.

See Also: For detailed information about the help source file format language,
refer to the XVT Portability Toolkit Reference.

Hypertext Online Help

22.5.1. How the Help System Applies
Formatting Commands
Most of the formatting commands take effect at runtime, rather than
compile time. Together, the compiler and runtime parser format the
help text following these rules:

• A single newline between lines of text in the help source file
translates into a space in the compiled file.

• Two adjacent newlines in the help source file translate into a
single newline in the compiled file.

• The parser word-wraps all topic text from the compiled help
file. Wrapping stops when a newline is encountered. The
newline starts a new line in the display window. The No
Word Wrap command overrides this.

• A \A in the compiled topic body instructs the parser to start a
new paragraph. One and one-half blank lines (in the current
font) separates paragraphs on-screen. The first line of a new
paragraph is not indented; to indent the first line, place a Tab
immediately after a \A.

• Tab stops are fixed to approximately the width of four “W”
characters in the default font.

• A default system font is automatically selected until the first
font change. Every topic always starts with the default font.

• An embedded font change command changes the current
22-19

font, until another font command changes it again.
• Text is reformatted when the display window is resized.
• Pictures are always output at the current X coordinate of the

display window (i.e., the X position of the previous text
character or the left margin if there is no text), and are clipped
to the right edge.

• Left margins remain in effect until reset, or another topic
starts—each topic begins with a zero left margin.

• Indentation settings are reset to zero at the beginning of each
paragraph, and after two newlines.

XVT Portability Toolkit Guide

22-20

22.5.2. Predefined Help Topic Information
XVT provides some reserved topic identifiers, as well as pre-written
help topics for several of them.

22.5.2.1. Reserved Help Identifiers
The following symbols are reserved topic identifiers, which
correspond to the items on the predefined Help menu:

Topic ID: Corresponding Item:

XVT_TPC_HELPONHELP Information about the help system
XVT_TPC_KEYBOARD Information about special keys
XVT_TPC_INDEX Help index
XVT_TPC_CONTENTS Help table of contents
XVT_TPC_TUTORIAL Application tutorial information
XVT_TPC_ONVERSION Application version information
XVT_TPC_GLOSSARY Glossary of terms

The xvt_help.h file defines these reserved topic identifiers. It may
also contain additional identifiers that are not listed here.

If you use the standard Help menu, you must provide help text for
each of these topics. You can either write the text yourself, or use
pre-written text for some of the topics.

Note: Since the topics XVT_TPC_INDEX, XVT_TPC_CONTENTS, and
XVT_TPC_TUTORIAL are necessarily dependent on your application,

XVT provides no pre-written text for them.

The following symbols are reserved topic identifiers, which
correspond to predefined XVT dialogs:

Topic ID: Corresponding Dialog:

XVT_TPC_FILE_OPEN xvt_dm_post_file_open
XVT_TPC_FILE_SAVE xvt_dm_post_file_save
XVT_TPC_ASK xvt_dm_post_ask
XVT_TPC_NOTE xvt_dm_post_note
XVT_TPC_ERROR xvt_dm_post_error
XVT_TPC_WARNING xvt_dm_post_warning
XVT_TPC_STRING_PROMPT xvt_dm_post_string_prompt
XVT_TPC_FONT_SEL xvt_dm_post_font_sel
XVT_TPC_PAGE_SETUP xvt_dm_post_page_setup
XVT_TPC_MESSAGE xvt_dm_post_message

Hypertext Online Help

When the user requests help while an XVT predefined dialog is
active, XVT sends an E_HELP event with the corresponding topic
ID to the task event handler. The tid member of the help event
structure is set to one of the predefined IDs above. If the help file
contains a topic pertaining to that ID, the help viewer displays it.

22.5.2.2. Predefined Help Topics
XVT provides help topic text for several of the reserved topic
symbols, including XVT_TPC_HELPONHELP, XVT_TPC_KEYBOARD,
and others. The xvt_help.csh file contains these topics.

You can include this file in your help source file to provide default
help information for the reserved topic symbols. However, the
predefined help topic text in the xvt_help.csh header is incomplete,
so you will most likely want to override these topics in your own
help source file.

Tip: To include all of the XVT-provided topics in xvt_help.csh:

Add this line to the end of your help source file:
#include "xvt_help.csh"

Tip: To include some, but not all, of the topics in xvt_help.csh:

1. Provide your own help topic text for the topics you wish to
customize, in your help source file.
22-21

2. At the bottom of your help source file, undefine all reserved
topic identifiers whose XVT-provided topic text you want to
omit, and redefine them as –1. The compiler skips any help
topics that have a topic identifier of –1.

3. Add this line to the end of your help source file:
#include "xvt_help.csh"

Note: If your code includes the file xvt_help.csh, you must place the “#scan
"xvt_help.h"” statement in the order shown in the following example.

The xvt_help.h file defines the topic identifiers referenced by
xvt_help.csh.

XVT Portability Toolkit Guide

22-22

Example: Suppose you want to provide custom help text for the
XVT_TPC_KEYBOARD topic, but use the XVT-provided text for
all other reserved topics. Your help source file would contain the
following text:

HTOPIC XVT_TPC_KEYBOARD "Special Keyboard Commands"
' your help text
…
' at the end of the file:
#scan "xvt_help.h"
#undef XVT_TPC_KEYBOARD
#define XVT_TPC_KEYBOARD -1
#include "xvt_help.csh"

Hypertext Online Help

22.6. The Help Compiler
XVT’s help compiler, helpc, compiles your help source files into a
compact, binary format. This file format allows the help system to
rapidly access your help text while your application executes. A
compiled help file is portable across all XVT platforms; you can use
one file on each platform without separate recompilation.

The help compiler operates in essentially the same manner, and uses
the same command-line options, on all XVT platforms.

See Also: For information about using the helpc compiler, refer to the
XVT Portability Toolkit Reference.

22.6.1. Manifest Constants
The help compiler always predefines the following symbols before
compiling the help source:
__helpc__

Defined when the complier is running. When the compiler was
built, this symbol was set to the value of XVT_HELP_VERSION.
You can conditionally compile your header files based on the
existence of this symbol.

HELP_FMT_XVT
HELP_FMT_WIN

One of these is defined by the compiler based on the value of
the -f command line option. This allows you to conditionally
22-23

compile your help source based on the format of the output that
the help compiler is generating. These symbols are defined as
follows:

Symbol Defined: -f Option: Description:

HELP_FMT_XVT XVT XVT portable help file format
HELP_FMT_WIN WIN Win32 file format

Example: This code conditionally compiles a topic for the native
MS-Windows help viewer, Winhelp:

#ifdef HELP_FMT_WIN
HTOPIC NativeWinhelpTopic “Native Topic”
This topic will only be compiled for the native

MS-Windows help viewer.
#endif

XVT Portability Toolkit Guide

22-24

22.6.2. Help Source File Text Limitations
Help source files are constrained by the following limitations:

• The text for each topic must be no more than 64K bytes
• Individual bitmaps must be no more than 32K bytes in size
• Bitmaps can be black and white, 16-color or 256-color
• Bitmaps must be in MS-Windows BMP format, and should

have a resolution of 96 dots per inch
• The total size of the help source file must be no more than

99,999,999 bytes
• Each topic can have no more than 16 keywords
• Tokens in the help file must be no more than 256 bytes each

(a token is delimited by white space or punctuation)
• Help files that use different languages and character codesets

may need to be stored in separate files (and be compiled on
the platform where they are to be used)—see Version 4.5 note
below

Help source text files and the binary help files generated by helpc
are portable between XVT-supported platforms if the target
character codesets are compatible. Specifically, characters used in
the help source files must come from the invariant character
codeset.) For more details, see section 19.4.5 on page 19-52.

Languages and Codesets

A
LANGUAGES AND CODESETS

This appendix lists XVT abbreviations for languages and character
codesets. However, XVT does not directly support all these
languages and character codesets. The five languages that are fully
supported at this time are:

English Portugese (Brazil)

German Japanese

Spanish (Spain) Korean

Italian Simplified Chinese

French Traditional Chinese

Because XVT string resources are now stored in a separate file,
A-1

your application can be programmed in any language, but the five
languages listed above are the only languages for which pre-
translated resources are shipped with the XVT Portability Toolkits.
If you need to support any other language, you must translate many
standard resources yourself, such as the strings that are displayed in
XVT’s predefined dialogs.

Remember that bi-directional languages are not supported.
However, for your convenience, all recognizable language
abbreviations are listed below—both bi-directional and left-to-right.
You need to know the language abbreviation, because you
must use it as part of the filename for the file that contains your
internationalized resources. (For more information on filenaming
conventions in internationalized applications, see section 19.2.1 on
page 19-18.)

All listed languages are uni-directional, left-to-right unless specified
otherwise.

XVT Portability Toolkit Guide

A-2

A.1. Language Abbreviations
XVT <3 character language code> abbreviations are as follows:

Abbrev: Lanquage: Direction:

afr Afrikaans
alb Albanian
amh Amharic
ara Arabic bidirect
arm Armenian
asm Assamese
aze Azerbaijani bidirect
bah Bahasa Indonesia
bal Baluchi
bel Belorussian
ben Bengal
bih Bihari
bul Bulgarian
bur Burmese
cat Catalon
che Chewa
chi Chinese
chu Chuang
cop Coptic
cro Croatian
cyr Cyrillic
cze Czech

dan Danish
dar Dari Persian bidirect
dut Dutch
dzo Dzongkha
eng English
est Estonian
ewe Ewe
fae Faeoese
far Farsi bidirect
fij Fijian
fin Finnish
fle Flemish
fre French
ful Fulani

Languages and Codesets

Abbrev: Lanquage: Direction:

gal Galla
geo Georgian
ger German
gre Greek
grl Greenlandic
guj Gujarati
hau Hausa
hbr Hebrew bidirect
hin Hindi
ibo Ibo
ice Icelandic
iri Irish Gaelic
ita Italian
jpn Japanese (also top/bot)
jav Javanese
kan Kanarese
kas Kashmiri
kaz Kazakh
khm Khmer
kir Kirghiz
kor Korean (al so top/bot)
kur Kurdish bidirect
kuy Kuy
lad Ladino
A-3

lao Laotian
lap Lappish
lat Latin
ltv Latvian
lav Lavana
lit Lithuanian
lux Luxembourgian
mac Macedonian
mad Madurese
mag Magyar
mlg Malagasy
mag Malay bidirect
mlm Malayalam
mld Maldivian
mlt Maltese
mao Maori
mar Marathi

XVT Portability Toolkit Guide

A-4

Abbrev: Lanquage: Direction:

mol Moldavian
mon Mongasque
mng Mongolian top/bot
nau Nauruan
nep Nepali
nor Norwegian
ori Oriyan
pal Pali
pas Pashto bidirect
pid Pidgin
pol Polish
por Portuguese
pun Punjabi
rom Romanian
rmh Romansch
rua Ruandan
run Rundi
rus Russian
sam Sami
smn Samoan
san Sango
snk Sanskrit
ser Serbian
ses Sesotho
set Setswana

sho Shona
sin Sindhi bidirect
snh Sinhalese
slo Slovak
sln Slovenian
som Somali
spa Spanish
sud Sudanese
swa Swahili
swz Swazi
swe Swedish
tad Tadzhik
tag Tagalog
tak Taki-Taki
tam Tamil

Languages and Codesets

Abbrev: Lanquage: Direction:

tel Telugu
tha Thai
tib Tibetan
tig Tigre
tgr Tigrinya
ton Tongan
tsw Tswana
tur Turkish
trk Turkmen
tuv Tuvaluan
ukr Ukrainian
urd Urdu bidirect
uzb Uzbek
ven Venda
vie Vietnamese
xho Xhosa
yid Yiddish bidirect
yor Yoruba
zul Zulu
A-5

XVT Portability Toolkit Guide

A-6

A.2. Character Codeset Abbreviations
The XVT <3-4 character codeset> abbreviations are one of the following:

Abbrev: Codeset: Languages:

General use:

inv Invariant ASCII
 Codeset (ASCII Subset)

asc ASCII Codeset
 (7-bit)

jis JIS Japanese
sjis Shift-JIS Japanese

XVT/XM:

is1 ISO 8859-1 Western European
 (ISO Latin-1) (Danish, Dutch, English,

Faeroese, Finnish, French,
German, Icelandic, Italian,
Norwegian, Portuguese,
Spanish, Swedish)

is2 ISO 8859-2 Eastern European
 (ISO Latin-2) (Albanian,

Czechoslovakian, English,
German, Hungarian, Polish,
Romanian, Serbo-Croatian,

Slovak, Slovene)

is3 ISO 8859-3 Southeastern Europe
 (ISO Latin-3) (Afrikaans, Catalan, Dutch,

English, Esperanto,
German, Italian, Maltese,
Spanish, Turkish)

is4 ISO 8859-4 Northern European
 (ISO Latin-4) (Danish, Estonian, English,

Finnish, German,
Greenlandic, Lappish,
Latvian, Lithuanian,
Norwegian, Swedish)

Languages and Codesets

Abbrev: Codeset: Languages:

is5 ISO 8859-5 Bulgarian, Belorussian,
 (ISO Cyrillic) English, Macedonian,

Russian, Serbo-Croatian,
Ukrainian

is6 ISO 8859-6 Arabic, English
 (ISO Arabic)

is7 ISO 8859-7 English, Greek
 (ISO Greek)

is8 ISO 8859-8 English, Hebrew
 (ISO Hebrew)

is9 ISO 8859-9 Western European
 (ISO Latin-5) (Danish, Dutch, English,

Faeroese, Finnish, French,
German, Italian,
Norwegian, Portuguese,
Spanish, Swedish, Turkish)

is10 ISO 8859-10 Danish, English, Estonian,
 (ISO Latin-6) Faeroese, Finnish, German,

Greenlandic, Icelandic,
Lappish, Latvian,
Lithuanian, Norwegian,
Swedish

uja EUC-JA Japanese, English
uctw EUC-CH_tw Traditional Chinese, English
A-7

uccn EUC-CH_cn Simplified Chinese, English
uko EUC-KO Korean, English

XVT Portability Toolkit Guide

A-8

Abbrev: Codeset: Languages:

XVT/Win32:

big5 Big-5 Traditional Chinese
gbc GB-Code Simplified Chinese
cns CNS Simplified Chinese
kcs KCS Korean
w50 Windows 1250 WINEE
w51 Windows 1251 WINCYR
w52 Windows 1252 ANSI
w53 Windows 1253 WINGREEK
w54 Windows 1254 WINTURK
w55 Windows 1255 WINHEB
w56 Windows 1256 WINARAB
w57 Windows 1257 WINBALT

XVT/Mac:

mrmn Mac-Roman Roman-based languages
mce Mac-CE Central and Eastern Europe
mcro Mac-Croatian Croatian
mheb Mac-Hebrew Hebrew, Ladino, Yiddish
mcyr Mac-Cyrillic Belorussian, Bulgarian,

Kazakh, Kirghiz,
Macedonian, Moldavian,
Russian, Serbian, Tadzhik,

Turkmen, Ukrainian,
Uzbek, Azerbaijani,
Mongolian

mtha Mac-Thai Thai, Kuy, Lavna, Sanskrit,
Pali

mara Mac-Arabic Arabic, Baluchi,
Dari Persian, Farsi, Kurdish,
Pashto, Sindhi, Urdu,
Azerbaijani, Kashmiri,
Malay

mice Mac-Icelandic Icelandic
mgre Mac-Greek Greek, Coptic
mtu Mac-Turkish Turkish
big5 Big-5 Traditional Chinese
kcs KCS Korean

Utilities

B
UTILITIES

This appendix contains information about the following XVT
utilities:

• String list (SLIST) functions
• I/O stream objects
• The NOREF macro

B.1. String List (SLIST) Functions
A string list is a linked list of zero or more NULL-terminated C
character strings in some order. XVT refers to string lists with the
type SLIST (whose actual definition is hidden). Each string is
associated with a long word (32 bits) that can hold any data you
B-1

want—typically, it holds a pointer. You cannot manipulate SLISTs
directly, but XVT supplies several functions to do the manipulation
for you.

Note: Multibyte strings can be used for all strings contained in SLISTs.
For detailed information about functions that can be used to process
strings in a multibyte-aware application, see section 19.2.5 on page
19-25.

Tip: To create an SLIST:
Call xvt_slist_create.

Tip: To dispose of an SLIST (freeing its memory):
Call xvt_slist_destroy.

Tip: To add a string (along with a long word of data) or another SLIST
to an existing SLIST:

Call xvt_slist_add_at_elt.

XVT Portability Toolkit Guide

B-2

Tip: To insert a new string (along with a word of data) into an existing
SLIST in alphabetical order:

Call xvt_slist_add_sorted.

The strings already present in the existing SLIST should be in
alphabetical order.

Tip: To add a string or SLIST at a given position:
Call xvt_slist_add_at_pos.

Tip: To remove a string from an SLIST:
Call xvt_slist_rem.

Tip: To count the number of elements in an SLIST:
Call xvt_slist_count.

Tip: To get a textual representation of an SLIST:

Call xvt_slist_debug.

This function writes its output to the same file used by xvt_debug and
xvt_debug_printf.

Tip: To find out if you have a pointer that is pointing to an SLIST:
Call xvt_slist_is_valid.

SLIST_ELT Objects
Another kind of object, an SLIST_ELT, holds an element of an SLIST
(string plus long word of data). Given an SLIST_ELT you can do the
following:

Tip: To retrieve an SLIST_ELT’s string and data:
Call xvt_slist_get.

Tip: To retrieve the string and data by numeric index (starting with 1):
Call xvt_slist_get_elt.

Tip: To loop through all elements of an SLIST:
Call xvt_slist_get_first and xvt_slist_get_next.

Tip: To change the data associated with an element:
Call xvt_slist_get_data.

Utilities

SLISTs are commonly used to add strings to a list box or to retrieve
the contents of a list box. They are also returned by the functions
xvt_fsys_list_files, xvt_res_get_str_list, and xvt_scr_list_windows.

Note: SLISTs cannot contain carriage returns, line feeds, or new lines.

XVT automatically handles memory allocation and deallocation for
SLIST_ELTs and for strings when you call the various functions
mentioned above. However, if you use an element’s long word to
store a pointer, you are responsible for allocating and deallocating
the memory to which the pointer is pointing. Also, if you are
presented with an SLIST by a function such as xvt_list_get_sel, you are
responsible for deallocating it (with xvt_slist_destroy) when you no
longer need it.

Tip: Because the implementation of SLISTs involves much linear
searching, it’s inefficient to use them for more than about a hundred
elements. If you need to efficiently manage hundreds or thousands
of elements, you’ll have to design your own data structures using
techniques such as hashing.

See Also: For more information about SLISTs, see SLIST in the XVT Portability
Toolkit Reference.

B.2. The I/O Stream Object
The I/O stream object is an abstraction of an arbitrary data input/
output stream (“stream” implies that individual bytes are always
B-3

processed sequentially and that there is never any need for direct
memory access—the classic example is the sequential text file,
sometimes called a “byte stream”).

XVT introduced the I/O stream object primarily as a vehicle for
processing image information either from a file source or from
an in-memory source (i.e., resource files and help system). Since
image processing is independent of the data source and requires
only sequential data access, XVT implemented a single image read
function that gets its data from a single I/O stream source.

Tip: To create an I/O stream object for reading data from a file:
Call xvt_iostr_create_fread.

Tip: To create an I/O stream object for writing data to a file:
Call xvt_iostr_create_fwrite.

XVT Portability Toolkit Guide

B-4

Tip: To create an I/O stream object for reading data:
Call xvt_iostr_create_read.

Tip: To create an I/O stream object for writing data:
Call xvt_iostr_create_write.

Tip: To get a pointer to the data stream context of an I/O stream object:
Call xvt_iostr_get_context.

Tip: To destroy an I/O stream object:
Call xvt_iostr_destroy.

B.3. NOREF
Tip: To establish a reference to a function’s otherwise unused argument:

Call the NOREF macro.

The NOREF macro generates no code—it simply suppresses the
warning given by some compilers when you fail to reference a
variable. The NOREF statement must follow all other variable
definitions.

Index

GUIDE
INDEX
Symbols
, 8-60–8-63
~ (tilde) keyboard mnemonics, 8-65, 9-7

A
abnormal exits, 4-16
About box, posting, 7-6
about_box_ID, 2-5
accelerators, See keyboard accelerators
access functions, native, 1-5
accessing memory, 20-2
AJEC, 19-15
aligning patterns, 13-15
allocating

in-memory menu definitions, 9-5
memory, 20-1–20-2
resource memory, 20-3

American Standard Code for Informatio
Interchange, See ASCII

animation, possible pitfalls, 4-64
ANSI (MS-Windows codeset), 19-15
ANSI C

character and string processing, 19
character events, 19-29
compilers, 2-12
locale-specific strings, 19-43
multibyte or wide characters, 19-25
replacement functions, 19-39
string operations, 19-26, 19-39
wide characters, 4-17

API
encapsulated font model, 15-1

function parameters, 2-14
normalized naming convention, 2-1
printing, 18-10
XVT, 2-1

appl_name, 2-5
Apple, See Macintosh
application data

attaching to windows, 6-18
for font mapper, 15-7
freeing, 3-13
pixmaps, 12-9

application heap, 20-1
application programming
I-1

n

-39–19-40

color guidelines, 11-3
development process for C, 1-5
development process for C++, 1-8
handling computation-intensive operations,

4-10
internationalized XVT application, 1-12,

19-3, 19-34
localized XVT application, 19-48
providing online help, 22-10
reporting warnings and errors, 21-8
working with fonts, 15-10

Application Programming Interface, See API
application-bound viewer, 22-7, 22-12
applications

adapting for world-wide use, 19-3
building blocks, 1-1
errors, 4-16
online help for, 22-11
optimizing performance, 2-14

XVT Portability Toolkit Guide

I-2

ordering of events for maximum portability,
4-12

passing control to XVT, 4-9
porting, 1-4
printing from, 18-10
terminating, 4-28
timers, 4-61

application-supplied font mappers, 15-16, 15-21,
15-23

Arabic, character codeset, A-7
arcs, drawing, 11-13
ascent (font metric), 15-8, 15-35
ASCII

char values, 19-23
definition, 19-10
tab character, 8-50

association tables, 22-15
ATTR_APP_CTL_COLORS, 8-64
ATTR_APP_CTL_FONT_RID, 8-57
ATTR_APPL_NAME_RID

definition, 19-22
localization, 19-55
localization example, 19-56
resource file binding, 19-33

ATTR_COLLATE_HOOK, 19-22, 19-26
ATTR_DEBUG_FILENAME, 21-8
ATTR_DISPLAY_TYPE, 11-4
ATTR_DOC_STAGGER_*, 10-7
ATTR

ATTR
ATTR
ATTR
ATTR

ATTR
ATTR
ATTR

ATTR
ATTR

ATTR_PROPAGATE_NAV_CHARS, 4-17,
6-10, 8-66

ATTR_RESOURCE_FILENAME
internationalization and localization, 19-22
localization, 19-55
localization example, 19-56
resource file binding, 19-32–19-33
XVT/Mac, 19-32

ATTR_SCREEN_*, 10-7
ATTR_SUPPRESS_UPDATE_CHECK, 4-10
ATTR_SUPPRESS_UPDATE_CHK, 7-4
ATTR_TASKWIN_TITLE_RID

internationalization and localization, 19-22
localization, 19-55
localization example, 19-57
resource file binding, 19-33

ATTR_WIN_PM_DRAWABLE_TWIN, 4-17,
6-4

ATTR_WIN_PM_NO_TWIN, 6-4
ATTR_X_DISPLAY_TASK_WIN, 6-4
attributes

configuration, 19-33
controls, 8-7, 8-56
file, 17-5
graphical and textual, 11-2
logical font, 15-3, 15-7
menu, 9-6
object, 1-2
_ERRMSG_FILENAME, 19-22, 19-55,
21-8

_ERRMSG_HANDLER, 21-5
_EVENT_HOOK, 4-15, 8-15
_FONT_DIALOG, 15-32
_FONT_MAPPER, 15-16, 15-20, 15-21,

15-23
_KEY_HOOK, 4-15, 4-20, 19-30
_MEMORY_MANAGER, 20-2
_MULTIBYTE_AWARE

awareness defined, 19-17
internationalization and localization, 19-22
key hook attribute, 4-20, 19-30
localization, 19-55
localization example, 19-56

_NUM_TIMERS, 4-61
PRINTER*, 10-7

platform-specific, 2-6
portable, 1-5, 2-6, 19-22
portable font, 15-7
system, 1-5, 2-6, 10-7
window, 3-10

attributes, of controls
check box, 8-9
edit field, 8-14
group box, 8-28
icon control, 8-40
list box, 8-17
list button, 8-22
list edit, 8-25
push button, 8-7
radio button, 8-11
scrollbar, 8-21
static text, 8-12

Index

text edit, 8-45
auto-scrolling

automatic, 14-3
definition, 13-5
dragging, 4-49
implementing, 13-14
sample function, 13-14
sample scrolling algorithms, 13-6
text edit, 8-45, 8-51

B
background color, 8-48, 8-58
backslash character, in XRC strings, 5-9
bands, for printing, 18-4
base_appl_name

invoking XVT, 2-5
naming the resource file, 5-5
XVT_CONFIG field, 5-5, 19-22

baseline, of text, 10-4
bi-directional languages, not supported, A-1
binary resources, 5-3
bitmaps

in online help, 22-24
in portable images, 12-1
internationalized, 19-45

blending colors in controls, 8-59
B

b
b

b

b
b
b

b

C
cache size, for fonts, 8-56
callback function

print, 18-4
prototype, 2-7
scroll, 8-51

calling conventions, 2-7
Cancel button, 4-55, 5-5
capitalization, 19-9
carets

blinking, removing or restoring, 4-30
definition, 14-3
hiding, 14-3, 15-36
logical, physical, 14-3
positioning and sizing, 14-4

carriage return character, in XRC strings, 5-10
cascading menus, 9-1
case sensitivity, 15-28
casting XVT_WCHAR characters to char, 4-17,

19-30
CB_APPL, 16-2
CB_FORMAT, 16-1
CB_PICT, 16-2
CB_TEXT, 16-1
CBRUSH, 11-7
char, ANSI data type, 4-17, 5-7, 19-23
I-3

MP
MS-Windows, 12-1, 12-5, 12-15

ookmarks, 22-3–22-4, 22-7
order

color, 8-48, 8-58
modal windows, 6-9
rectangles, 8-44
text edit objects, 8-45, 8-48
windows, 6-7

rushes
background color, 11-7
CBRUSH, 11-7
PAT_STYLE, 11-6

uffers, 19-42
undle resources, 5-2
uttons

See list buttons, push buttons, or radio
buttons

yte stream, 19-24, B-3

character code, definition, 19-10
character codeset

AJEC, 19-15
Arabic, A-7
ATTR_MULTIBYTE_AWARE, 19-22
Chinese, A-8
Danish, A-7
definition, 19-10
English, A-7
Farsi, A-8
fonts, 19-46
French, A-6
German, A-6
Greek, A-8
Hebrew, A-7
invariant, 19-12, 19-35, 19-53
ISO 8859, 19-15
ISO Latin-1, 19-15
Italian, A-6

XVT Portability Toolkit Guide

I-4

Japanese, A-6
Korean, A-7
Latin, A-6
list of abbreviations, A-6
list of supported, A-6
localization, 19-15, 19-48
multibyte, 19-13
Norwegian, A-7
Persian, A-8
Polish, A-6
Portuguese, A-7
single-byte, 19-13
Spanish, A-6
Swedish, A-7
virtual key codes, 19-30
wide characters, 19-13, 19-14, 19-23, 19-41
Windows 1252, 19-15
XVT constants and files, 19-19
XVT file conventions, 19-18
XVT-supported, 19-14
Yiddish, A-8

character pointers, 19-41
characters

multibyte-aware applications, 4-17
non-portable, 19-35
processing, 19-24, 19-29, 19-39
sizes, 19-25
virtual, 19-30

check

check
child

Chine

clean
click,
client

location, 10-3
redrawing, 4-63

clipboard
copying and pasting, 16-5
formats, 16-1
help topic windows, 22-4
putting data on, 16-3
retrieving data, 16-4
text, 16-1

clipping
area, 4-63
explanation of, 6-20
rectangles, 11-11
responding to E_SIZE events, 4-59
when font changes, 8-57

close dialog control, 7-6
CLUT, See color look-up table
code page, definition, 19-10
collation algorithm, 19-9, 19-26
collation hook, See ATTR_COLLATE_HOOK
color

adding to palettes, 12-13
allowing user to choose, 7-6
background, 8-48, 8-58, 11-7
controls, 8-58
cultural differences, 19-10
default, 11-9
foreground, 8-48, 8-58, 11-9
 boxes
definition, 8-8
events, 4-26
setting state, 8-8
ing menu items, 9-7
windows
aspects of, 6-6, 6-15
characteristics, 6-15
coordinates, 10-1
se

character codeset, A-8
characters, 19-13
up code, 4-56
 definition, 4-46
 area
definition, 6-11
dimensions, 6-11

guidelines, 11-3
images, 12-3, 12-6
indexed, 12-3, 12-7
interiors, 11-2
internationalization, 19-45, 19-46
look-up table, 12-3, 12-7
mapping, 12-3
outlines, 11-2
palettes, 12-4, 12-11
PAT_SOLID, 11-8
RGB model, 11-2, 12-3
secondary, 8-59
text, 11-2
text edit, 8-48
tolerance attribute, 12-13
window background, 6-22
X Window System, 12-12

Index

XVT_COLOR_* constants, 8-59
XVT_COLOR_COMPONENT array, 8-59

combo controls, 8-1, 8-22, 8-24
comments, in XRC, 5-9
compile constants, 19-19
compilers

C language, 2-12, 19-25
C++ language, 2-7, 2-12
feature symbols, 2-12
native help, 22-2
optimization, 2-14
preprocessor conditional operators, 2-8
resource, See xrc
symbols, 2-12
XRC, 5-12
XVT help, 22-23

computation-intensive operations, 4-10
configuration attributes, 19-33
constants

compile, 19-19
CURSORS_*, 14-1
EOL_SEQ, 16-1
event masking (EM_* events), 3-15, 4-14
integer, 5-10
internationalization, 19-24
LANG_*, 5-6, 19-18–19-19, 19-50, 19-52

mnemonics, 4-19
mouse events, 4-54

CONTROL_INFO, 3-15, 4-25, 8-2, 8-4
controller, font mapping, 15-5, 15-19–15-24
controls

check boxes, 8-8
component colors, 8-58
creating, 8-2
creation flags, 3-20
defining, 8-3
defining coordinates, 10-1–10-3
definition, 3-1
descriptions, 8-7
destroying, 3-21
dialog, 3-12, 7-4
drawing to, 11-2
during E_DESTROY, 3-13
dynamic, 8-3
edit field, 8-13
event handlers, 4-7
events, 3-15, 8-2, 8-4
fonts, 8-56, 15-17
group boxes, 8-28
icons, 8-39
ID, retrieving, 3-21
invisible, 7-5, 8-2
I-5

NULL_FNTID, 8-57
NULL_TXEDIT, 8-47
SZ_FNAME, 17-2, 19-24
SZ_LEAFNAME, 17-2, 19-24
UCHAR_MAX, 19-30
XVT_COLOR_*, 8-59
XVT_MAX_MB_SIZE, 19-25
XVT_MOD_KEY_*, 4-18

container objects
coordinates for, 10-1
creating with resources, 3-4
definition, 3-1
destruction of, 3-21
mnemonic characters, 8-66

context-sensitive help, 22-9, 22-14
contextual characters, 19-9
Control key

command events, 4-24
E_CHAR events, 4-18

keyboard mnemonics, 8-65
list boxes, 8-16
list buttons, 8-22
list edits, 8-24
logical fonts, 15-17
manipulating, 8-2
notebooks, 8-30
operating, 4-25
parent window, 3-15
placing, 6-11
push buttons, 8-7
radio buttons, 8-10
resource-based, 8-2, 8-3
scaling, 5-7
scrollbars, 8-20
setting attributes, 8-7, 8-56
static text, 8-12
structure-based, 8-3
text edit, 8-41

XVT Portability Toolkit Guide

I-6

types, 8-4
window, 3-2
XVT-supported, 8-1

conventions
for code, 2-xviii
for linking functions, 2-7
general manual, 2-xviii
XVT internationalized files, 19-18

coordinate systems, 10-1, 10-7
coordinates

border and view rectangles, 8-44
container objects, 10-1
data- vs. window-relative, 4-40
finding container, 3-18
pixels, 10-1
units in XRC, 5-6

Copy command, 16-5
copying logical fonts, 15-18
CPEN, 11-5
creating

child windows, 6-15
controls, 8-2
dialogs, 7-4
GUI objects, 3-4
icon controls, 8-39
menus without resources, 9-6
text edit objects, 8-45
windows, 3-12, 6-11

creati

creato
.csa f
.csh f
CTL_
xrc

d
f
i
i
i
l

provides standard XVT resources, 5-5
resource file binding, 19-32
translating XRC specifications, 5-1

CURSOR_* constants, 14-1
cursors

hiding, 14-2
list of types, 14-1
setting shape, 4-29
to indicate possible delay, 14-2

customer support, XVT, 2-xxi, 2-xxvii
customized

error dialogs, 21-5
font mapping, 15-21
Font Selection dialog, 15-31
memory management functions, 20-2
scrolling functions, 13-1

Cut command, 16-5

D
Danish

character codeset, A-7
characters, 19-54

data structures
CONTROL_INFO, 8-4
EVENT, 8-4
freeing, 6-19
menus, 9-6
print record, 18-2
on flags
controls, 3-20
dialogs, 3-20
modal windows, 6-9
windows, 3-20
r, of files, 17-5

iles, 22-16
iles, 19-21
FLAG_* flags, 3-21

creating portable resources, 5-3
efinition, 1-10
or localized applications, 19-52
nclude German default resources, 19-53
nclude resource and help source text, 19-50
nterpretation of octal digits, 5-10
ocalization, 19-21

putting on clipboard, 16-2
data types, See types
DATA_PTR type, 19-24
data, associating with window, 6-18
date/time, method of representing, 19-10, 19-43
debug file, 21-8
debugging

debug file, 21-8
error files, 21-8
error tracing, 21-8
localized application, 19-3

decorations
window, 6-8
window and dialog, 3-3, 8-58

default
brush, 11-11
button, 5-5

Index

color, foreground and background, 11-9
colors in controls, 8-58
control component colors, 8-64
fonts in controls, 8-57
language resources, 19-54
pen, 11-11

DEFAULT_FONT_MENU, 15-30, 15-33
DEFAULT_HELP_MENU, 22-13
defining, See creating
descendants of a parent window, 6-16
descent (font metric), 10-4, 15-8, 15-35
deserializing fonts, 15-37
diagnostics, code errors, 21-1
dialog boxes, See dialogs
dialogs

act as container objects, 3-1
application data, 3-13
buttons, Default and Cancel, 5-5
compared to windows, 3-2
controls, 3-12, 7-4
creating, 7-4
creation flags, 3-20
customized font selection, 15-31
defined relative to SCREEN_WIN, 10-1
defining controls, 7-5
defining coordinates, 10-3

modal and online help, 22-18
modality, 7-1
modeless, 7-4
moving, 3-20
page setup, 18-8
predefined, 5-2, 7-6, 22-20
resource-based, 3-5, 5-2, 7-4
scaling, 5-7
standard Open, 17-7
standard Save, 17-7
types, 7-1

dimensions
client area, 6-11
container, 3-18

directories
changing, 7-6
may contain multibyte characters, 19-43
portable, 17-2
prompting for path, 17-3

DIRECTORY, 17-3
disabling windows, 3-20
Discard button, 4-55
display metrics, 10-7
DLG_CANCEL, 5-5
DLG_FLAG_*, 3-11, 3-21
DLG_OK, 5-5
I-7

definition, 3-1, 7-1
destroying, 3-21, 7-4
destruction of modal vs. modeless, 7-5
dimensions, 3-18
drawing to, 11-2
E_CHAR events, 4-17
E_CREATE events, 4-27
E_FONT events, 4-31
event handlers, 3-14, 4-7, 4-63
Font Selection, 4-31, 15-6, 15-30
Go To, 22-7
in-memory structures, 7-5
invisible or disabled, 3-11
keyboard focus, 3-18
keyboard navigation, 6-14
manager, 7-1
manipulation functions, 7-7
mnemonic characters, 8-66
modal, 3-11, 7-2

DLLs
locale resource files, 19-33

do_scroll, 4-41–4-43, 13-6, 13-10
document

associated with windows, 4-57
origin, 13-4, 13-13
windows, 6-8

document window
compared to modal window, 6-10
saving changes before closing, 7-2

documentation, XVT, 2-xvi
double-click

definition, 4-44
in list box, 8-18
mouse, 4-13, 4-44
to select word of text, 15-37

dragging
E_MOUSE_MOVE events, 4-49
mouse, 15-36

XVT Portability Toolkit Guide

I-8

rectangle, 4-51
rubberband, 4-51
thumb, 8-20

DRAW_CTOOLS
background color, 11-9
clipping, 11-11
structure, 11-4, 11-10

drawing
arcs, 11-13
brush, default, 11-11
client area, 6-11
clipping, 6-20
coordinates for text, 10-4
definition, 11-2
during window initializations, 4-27
E_UPDATE events, 4-63
graphical attributes, 11-2
graphics primitives and text, 3-3
images, 12-8
lines, 11-13
M_COPY mode, 11-10
M_XOR mode, 11-10
manipulating tools, 11-11
modes, 11-10
ovals, 11-13
pen, default, 11-11
pictures, encapsulated, 11-13
pies, 11-13

r
s
s
t
t
u
w

drawi
a

drive
dynam

c

display of selected text, 15-36
resources, 19-32
topic threads, 22-4
windows, 3-12, 6-11

Dynamic Link Library, See DLLs

E
E_CHAR events

ATTR_MULTIBYTE_AWARE, 19-22
container window, 8-66
Control key, 4-18
description, 4-16
discussion, 4-17
event ordering rules, 4-13
event structure, 4-16
example, 4-21, 19-45
internationalization, 19-29
keyboard modifiers, 4-18
localization, 19-29
modal window behavior, 6-10
Shift key, 4-18
text edit objects, 4-18
virtual key codes, 4-19
wide characters, 19-23, 19-44

E_CLOSE events
discussion, 4-22
E_QUIT events, 4-56
event ordering rules, 4-13
pixmaps, 12-11
polygons, 11-13
polylines, 11-13
real-time, 6-19
rectangles, 6-22, 11-13, 11-15
estricting area for, 6-20
caling, 4-59
hapes, 11-12
ext, 11-13, 15-1
ools, 11-4
pdating, 4-63
indows, 4-63, 6-19

ng tools
llowing user to change, 7-6

s, switching, 7-6
ic

ontrols, 8-3

example, 4-23
E_COMMAND events

checking menu items, 9-7
discussion, 4-23
E_QUIT events, 4-55–4-56
example, 4-24
font changes, 15-34
menu events, 9-4
menus, 9-1

E_CONTROL events
discussion, 4-25
event ordering rules, 4-13
events and event handlers, 8-2
handling, 4-26

E_CREATE events
discussion, 4-27
E_UPDATE events, 4-63

Index

event ordering rules, 4-12
initializing and terminating dialogs and

windows, 3-12
E_DESTROY events

application errors, 4-16
discussion, 4-27
E_QUIT events, 4-56
event ordering rules, 4-12
handling, 4-28
terminating, 3-13

E_FOCUS events
discussion, 4-29
event ordering rules, 4-13
example, 4-30
recursive calls to event handlers, 4-9

E_FONT events
discussion, 4-31
example, 4-33
font selection dialogs, 15-30
font/style menus, 15-33
menu events, 9-4
menus and dialogs, 4-35
responding to, 4-32
responding to user font changes, 15-34

E_HELP events
discussion, 4-37

trapping the mouse, 14-2
E_MOUSE_MOVE events

auto-scrolling, 13-5
discussion, 4-48
example, 4-49
rectangle, 4-51
trapping the mouse, 14-3

E_MOUSE_UP events
discussion, 4-54
double-click, 4-44
ignore spurious events, 4-54
rectangle, 4-51
trapping the mouse, 14-2

E_QUIT events
cleanup code, 4-56
discussion, 4-55–4-56
example, 4-57
query-only, 4-57
types of, 4-55

E_SIZE events
clipping of text, 8-57
discussion, 4-58
event ordering rules, 4-13
example, 4-60
resizing a container, 3-20
responding to, 4-59
I-9

event handling, 22-17
event ordering rules, 4-13
example, 4-37

E_HSCROLL events
discussion, 4-38
examples, 4-41
optional scrollbars, 4-25
scrollbar range, 13-3

E_MOUSE_DBL events
discussion, 4-44
double-click, 4-44, 15-37
example, 4-45
ignore spurious events, 4-54

E_MOUSE_DOWN events
discussion, 4-46
double-click, 4-44
example, 4-47
pop-up menu, 9-8
rectangle, 4-51

E_TIMER events
discussion, 4-61
event ordering rules, 4-13
example, 4-62

E_UPDATE events
adding colors to a palette, 12-13
discussion, 4-63
do_scroll, 4-43
drawing, 4-63, 6-19
example, 4-65
illegal function calls during processing, 4-11
inducing, 4-64
recursive calls to event handlers, 4-9
redrawing window contents, 4-59, 4-63
restrictions, 4-10

E_USER events
discussion, 4-66
event ordering rules, 4-13

E_VSCROLL events

XVT Portability Toolkit Guide

I-10

discussion, 4-38
example, 4-41
optional scrollbars, 4-25
scrollbar range, 13-3

EBCDIC
definition, 19-11
single-byte character codeset, 19-13

edit
fields, 8-1, 8-13, 8-24
window, 8-41

Edit menu, 9-2, 16-5
eight-by-eight patterns, 13-15
EM_* constants, 3-15, 4-14
enabling windows, 3-20
encapsulated font model, 15-1, 15-3, 15-19
encapsulated pictures, See pictures
encoding scheme

definition, 19-11
See Also character codeset

English
character codeset, 19-13–19-19, 19-53, A-7
characters, 19-53

entering text, 8-43
enumerating windows, 6-16
EOL_SEQ constant, 16-1
ERRCODES.TXT file

error message file, 21-7
errscan tool, 21-6

error

error

errors

application, 4-16
bypass error checking, 2-14
checking, 21-1
codes, 21-3
event ordering rules, 4-12
failure to reference variable, B-4
fatal, 21-2
message object, 21-4
posting, 7-6
return value, 21-1
signaling, 21-2
tracing, 21-8
types of, 21-3

errscan
described, 21-6
generating error codes, 21-3

EUC
character codeset, 19-14
definition, 19-11

European characters, 19-13, A-6
event handlers

controls, 8-2
definition, 1-2
dialog, 3-14, 4-63
discussion, 4-7
help system, 22-17
menu, 3-16, 9-8
recursive calls, 4-9
file naming conventions, 19-18
initializing, 19-55
internationalization, 1-13
files
debugging, 21-8
header definition, 21-7
locale-specific, 19-50, 19-55
localized filenames, listed, 19-19
message file, 21-7
handlers
application-supplied, 21-5
discussion, 21-2
hierarchies, 21-4
registering, 21-5
stacked, 21-5
XVT-supplied, 21-6

sample structure, 4-8
sending events to, 4-8
summary table, 4-4
types of, 4-3
window, 3-14, 4-63, 6-13

event handling
check box, 8-10
edit field, 8-14
group box, 8-29
icon controls, 8-41
list box, 8-18
list button, 8-23
list edit, 8-26
push button, 8-8
radio button, 8-12
scrollbar, 8-21
static text, 8-13

Index

text edit, 4-18, 8-48
event hooks, 4-15, 8-15
EVENT structure

discussion, 4-6
E_CHAR events, 19-29
E_COMMAND events, 4-23
E_CREATE events, 4-27
E_FONT events, 4-36
handling character events, 19-44
virtual key codes, 4-17

EVENT_TYPE, 4-7
event-driven programming paradigm, 4-1
events

automatically passed, 4-8
control-related, 3-15
controls, 8-4
custom, 4-66
descriptions, 4-16
E_CHAR, 4-17, 19-44
EVENT, 4-1
focus deactivate, 4-30
generating during printing, 18-7
handling E_CONTROL events, 4-26
handling E_DESTROY events, 4-28
hooks, 4-15, 8-15
in child windows, 6-15

See Also individual event names
exiting an application, 4-55
exposed font model, 15-3
Extended ASCII, 19-11, 19-23
Extended Binary-Coded Decimal Interchange

Code, See EBCDIC
Extended UNIX Code, See EUC
extensibility, 1-4

F
family

logical font attributes, 15-7
supported font, 15-19

Farsi, character codeset, A-8
fatal errors

dialog box, 4-16
handler, 2-6
signaling, 21-2

File menu, 9-2
file system symbols, 2-9
file typing, 17-4
FILE_SPEC type, 17-2, 19-16
filenames

internationalization, 19-43
portable, 17-2
prompting for, 7-6
I-11

last received, 4-28
logical fonts in, 15-11
managing, 4-12
masking, 3-15, 4-14, 4-49
menu, 9-4
native, 4-2
not generated by icons, 8-41
occurrence of, 4-7
ordering rules, 4-12
processing immediately, 6-20
queue, 4-66
sending, 4-8
single-click, 4-45
suggested responses to, 3-14
summary, 3-15, 4-4
types of, 4-3
user interaction, 4-3
window management, 4-3, 4-9
XVT Portability Toolkit, 1-2

scanning, 7-6
size, 17-2, 19-24

files
attributes, 17-5
.csh, 19-21
debug, 21-8
editing, 8-43
ERRCODES.TXT, 1-13, 19-18, 19-55
error message, 19-50
handling, 17-1
header, 1-6
help, 19-50
help association table, 22-16
help include, 19-19
help source, 22-18
helpview.lng, 19-54
helpview.xrc, 19-54
image, 12-5, 12-15
.ini, 19-33

XVT Portability Toolkit Guide

I-12

input and output, 17-6
native binary help, 22-3
native help text, 22-2
online help header, 22-12
online help source, 22-24
online help text, 22-1
portable binary help, 22-1
processing selected, 17-6
resource, 1-12, 19-32, 19-34, 19-50
source, 1-6
strdef.h, 19-5, 19-8, 19-38
strres.h, 19-4, 19-7, 19-8, 19-38
types, 17-2, 17-4
xrc_plat.h, 5-5, 5-12
XRC, localized, 19-19, 19-32, 19-34, 19-50
xrc.h, 5-5, 5-12, 19-21, 19-50, 22-13
xvt_defs.h, 19-30
xvt_env.h, 2-8, 2-9, 2-12
xvt_help.csh, 19-21, 22-21
xvt_help.h, 22-20–22-21
xvt_help.xrc, 22-7, 22-10, 22-13
xvt_msgs.h, 21-7
xvt_plat.h, 2-8
xvtmenu.h, 4-24

fill color, in control, 8-59
Fixed font, 15-28
flashing, 3-12
Floating licenses, 2-xxviii
focus

font m

font mapping
definition, 15-3
multi-level, 15-20
XRC example, 5-13, 15-28

font mapping controller
definition, 15-3
discussion, 15-19–15-24

font model
definition, 15-3
encapsulated, 15-1, 15-3
exposed, 15-3

font resource type
discussion, 15-26
logical fonts, 15-11
multiple, 15-27

Font Selection dialog
discussion, 15-30
E_FONT events, 4-31
example, 4-35

font_map resource type, 15-11, 15-27
FONT_MENU_TAG, 9-8
Font/Style menu

discussion, 15-6
E_FONT events, 4-31–4-32
enabled or disabled menu items, 9-8
example, 4-35
setting logical font attributes, 15-33

fonts
activation events, 4-29
affects availablity of spot help, 22-9
deactivate events, 4-30
events, 4-9
example, 4-30
gaining or losing in a window, 4-29
keyboard, See keyboard focus
responding to changes, 4-29

appers
application-supplied, 15-16, 15-23
default, 15-21
definition, 15-3
discussion, 15-5
types of, 15-21
XRC, 15-25
XVT default, 15-28

assigning to windows, 15-17
attributes, 15-3, 15-7
basic concepts, 15-3
cache size, 8-56
controls, 8-56
copying, 15-18
creating, 15-10
customized dialogs, 15-31
defining as resources, 15-25
definition, 15-2
deserializing, serializing, 15-37
destroying, 15-10
E_FONT events, 4-31
family, 15-7
font XRC statement, 19-46
font_map XRC statement, 19-46
getting and setting attributes, 15-12

Index

identifying a NULL ID, 15-19
loading, 19-46
logical, 4-32, 15-2, 15-4, 15-7, 15-10, 15-26
manipulating, 15-4
mapping, 15-3, 15-9, 15-19, 15-22
metrics, 15-8, 15-35
native descriptors, 15-8, 15-15, 15-26
non-portable attributes, 15-8
ownership, 15-11
physical, 15-2, 15-15, 15-19
portable attributes, 15-7
predefined font selection dialog, 7-6
resources, 15-11
scaling, 15-9, 15-23
selection dialogs, 15-6, 15-30
size, 15-7
style_mask, 15-7
supported families, 15-19
unmapping, 15-16, 15-22
XRC resource types, 15-26
user changes, 15-34
verifying IDs, 15-19
window titles, 8-56
window, associated with, 15-8

foreground color, 8-48, 8-58
fork, resource, 5-3

parameter checking, 2-14
polymorphic, 2-3
prototypes, 2-12–2-13
window manipulation, 6-23
XVT string, 19-25, 19-40, B-1

fwrite, 11-18

G
geometry

of modal window, 6-10
of window or dialog, 4-58

German, character codeset, 19-15, 19-19, A-6
GHANDLE, 20-2
ghost window, 6-4
global

heap, 20-1–20-2
variables, 4-9

glossary hypertext links, 1-11, 22-20
graphical

attributes, 11-2
operations, 11-2
user interface objects, 1-2, 3-1

graphics
dragging, 6-19
drawing real-time, 6-19
internationalization, 19-45
I-13

form entry, 8-43
formatting locale-specific strings, 19-49
FPROTO switch, 2-13
free, substitutes for, 20-1
freeing

data structures, 6-19
global memory, 20-2
images, 12-6
menu definitions, 9-5
pixmaps, 12-9
resources, 20-3

French, character codeset, 19-15, 19-19, A-6
function calling convention macro, 2-7
functions

ANSI string, 19-39
callback prototype, 2-7
dialog manipulation, 7-7
key hook, 19-30
native access, 1-5

localization, 19-51
grayscale monitor, 11-3
Greek, character codeset, A-8
group boxes, 8-1, 8-28
GUI objects

as resources, 3-4
associating with help topics, 22-14
attributes, 1-2
common functions, 3-18
creating, 3-4
destroying, 3-21
formatting for different platforms, 5-8
list of all, 3-1
positioning, 19-47, 19-51
structure-based, 3-7

H
hardware

monochrome or grayscale monitor, 11-3

XVT Portability Toolkit Guide

I-14

resolution of screen, 10-7
hashing, B-3
header files, 1-6
heaps

application, 20-1
global, 20-1–20-2

Hebrew, character codeset, A-7
help compiler, See helpc
help files, 19-50
help include files, 19-19
Help menu, 9-2, 22-20
help viewer

application-bound, 22-12
definition, 22-2
discussion, 22-3
localizing, 19-54
native, 22-2

HELP_FMT_* constants, 22-23
help, See online help
helpc

definition, 1-11, 22-1
for localized applications, 19-52
German default help topics, 19-53
including resource and help source text,

19-50
portability of files, 22-24

helpview.lng file, 19-54
helpview.xrc file, 19-54
Helve
hexad
hidin

hierar
Hirag
Home
hook
horiz

hot b
HTM

platform differences, 8-36
redirecting URLs, 8-38
URL intercept handler, 8-36
xvt_html_get_url, 8-37
xvt_html_get_url_intercept, 8-37
xvt_html_set_url, 8-37
xvt_html_set_url_intercept, 8-37

HTOPIC, 22-15, 22-17
hypertext links, 22-1, 22-4
hypertext online help, See online help

I
I/O library functions, 17-6
I/O stream objects, B-3–B-4
I18N, See internationalization
icon XRC statement, 19-45
icons

controls, 8-1, 19-45
creating, 8-39
extracting graphics and colors, 19-45
internationalization, 19-10, 19-45
stored externally, 19-45

ideograph, definition, 19-11
image XRC statement, 19-45
images

color, 12-3
color look-up table, 12-3, 12-7
color mapping, 12-3
tica font, 15-28
ecimal digit, 5-10, 19-28

g
carets, 14-3, 15-36
cursor, 14-2
objects, 3-20
chical menus, 9-1, 9-3
ana characters, 19-12
 key, 19-30
functions, 4-15, 8-15, 19-26, 19-30
ontal scrollbar
do_scroll, 4-43, 13-10
example, 4-41
range, 13-3
uttons, 22-4
L controls, 8-35
launching default browser, 8-37

copying, 12-7
creating, 12-6
data types, 12-5
destroying, 12-6
drawing, 12-8
extracting graphics and colors, 19-45
features, 12-1
file formats, 12-5
filling, 12-6
formats, 12-1
in print windows, 12-11
indexed-color, 12-3, 12-7
manipulating, 12-7
monochrome, 12-3
palettes, 12-4
pixel values, changing, 12-7
pixels, 12-2

Index

pixmaps, 12-2
reading and displaying, 12-15
reading file formats, 12-15
retrieving a pointer, 12-7
saving files, 12-15
terminology, 12-2
transferring, 12-14
XVT portable, 19-45
XVT_IMAGE_* values, 12-5–12-6
XVT_IMAGE_FORMAT, 12-6

IME
definition, 19-11
discussion, 19-17
internationalization, 1-12

include files, renaming, 19-7
indexed color, 12-3, 12-7
inheritance, 2-3, 8-56, 8-58
.ini file, 19-33
initializing

dialogs and windows, 3-12
GUI objects, 3-4

in-memory structures, 7-5, 9-2, 9-5
input method editor, See IME
international applications, writing, 1-12, 19-3,

19-34
international customers, support, 2-xxiv

icons, 19-45
international symbols, 19-51
pathnames, 19-43
positioning GUI objects, 19-47
resource files, 1-12, 19-32
sizing GUI objects, 19-47
string functions, 19-25
string literals and character codeset issues,

19-35
strscan, 19-7, 19-36
XVT applications, 5-6, 19-14, 19-34
XVT-Design, 19-4

intersection, of rectangles, 10-6
invariant character codeset

definition, 19-12
help source text files, 19-53
ISO 646 codeset, 19-35
portability, 19-53
XVT string functions, 19-27, 19-28

invoking
help, programmatically, 22-10
online help, 22-9
XVT, 2-4

ISO 646 standard character codeset, 19-10, 19-12,
19-15

ISO 8859 standard character codeset, 19-11, 19-15
I-15

International Standards Organization, 19-12
internationalization

adapting an application, 19-1, 19-3, 19-6
adapting help files, 22-24
attributes, 19-22
bitmaps, 19-45
characters and strings, 19-24, 19-29, 19-39
color, 19-45
constants, 19-24
data types, 19-23
definition, 19-11
E_CHAR events, 19-29, 19-44
extracting strings, 19-35
filenames, 19-43
fonts, 19-46
formatting locale-specific strings, 19-43
general steps, 19-3, 19-34
graphics, 19-45
guidelines, 19-2

ISO, See International Standards Organization
Italian, character codeset, 19-15, 19-19, A-6

J
Japanese characters

definition, 19-12
filenaming conventions, 19-19
localized PTK resources, 19-15
multibyte character codeset (MBCS), 19-13
portability, 19-53

Japanese EUC, See AJEC
Japanese Industrial Standard, See JIS
Japanese, character codeset, A-6
JIS

definition, 19-11
not supported, 19-14

K
K_* key values, 19-30

XVT Portability Toolkit Guide

I-16

K&R, 2-13
Kana (Hiragana and Katakana) characters, 19-12
Kanji characters, 19-11, 19-12
Katakana characters, 19-12
key codes, 4-16, 4-17, 4-19, 19-29–19-30
keyboard

input, 8-15, 19-17
traversal, 7-1

keyboard accelerators
internationalization, 19-10, 19-49
menu accelerators, 4-19

keyboard focus
assigning explicitly, 3-18
cannot be assigned to icon, 8-41
E_CHAR events, 4-17
edit fields, 8-13
indicating with highlight, 8-59
list edit control, 8-25
Macintosh compared to Motif, 3-19
windows, 3-18, 6-22

keyboard keys
hook functions, 4-15, 4-20, 19-30
processing for multibyte, 4-17

keyboard mnemonics
control keys, 4-19
controls, 8-65
internationalization, 19-10
processing in controls, 8-66

keybo

keybo

keys

Shift, 4-18
virtual codes, 4-17, 19-29–19-30

keywords, in help files, 22-8
Korean

character codeset, A-7
characters, 19-13

L
LANG_* constants, 5-6, 19-18–19-19, 19-50,

19-52
language support, See internationalization or

localization
languages

list of abbreviations, A-2
supported, A-1
See Also individual languages

Latin, character codeset, A-6
leading (font metric), 15-8, 15-35
left-to-right languages, supported, 1-13, A-1
library, initializing XVT, 2-4
line feed character, in XRC strings, 5-10
lines

caps and joints, 11-15
comparison of types, 11-15
drawing, 11-13
mapping in scrolling, 13-3
PAT_HOLLOW, 11-15
scrolling, 8-20
ard modifiers
E_CHAR events, 4-18
internationalization, 19-10
ard navigation

DLG_OK and DLG_CANCEL, 5-5
E_FOCUS events, 4-29
in modal window, 6-10
in normal window, 6-14, 8-66
XVT_NAV, 6-14

Alt, 4-18
changing behavior, 8-15
Control, 4-18, 4-19
Home, 19-30
modifier, 4-18
Option, 4-18
raw codes, 4-20, 19-30

text edit, 8-44
wide, 11-15
zero-pen-width lines, 11-15

lint, 2-13
list

boxes, 8-1, 8-16, 8-18
buttons, 8-22
edits, 8-24

listing windows, 6-22
lists, string, 8-16, B-1
LMNetServer, 2-xxviii
LMNetServer.elm, 2-xxviii
LOCAL_C_STR macro

definition, 19-36
internationalization example, 19-37
replace string literals, 19-5

locale

Index

definition, 19-12
internationalization, 5-6
specified at application startup time, 1-12,

19-32, 19-34
using XVT-Design macros, 19-5

localization
adapting an application, 19-1, 19-6
application initialization, 19-55
attributes, 19-22
bitmaps, 19-51
character codeset, 19-48
colors, 19-51
constants, 19-24
data types, 19-23
debugging an application, 19-3
definition, 19-13
E_CHAR events, 19-29
environment selection, 19-55
environment setup, 19-48
general steps, 19-6, 19-48
graphics, 19-51
help viewer, 19-54
icons, 19-51
positioning GUI objects, 19-51
resource files, 1-12, 19-32
sizing GUI objects, 19-51

See Also fonts
look-and-feel

control mnemonics, 8-65
for list edit controls, 8-27
modal windows, 6-9
object-click help, 22-9
use of color, 8-59

lowercase characters, 19-28

M
M_COPY, 11-10
M_FILE_CLOSE, 4-24
M_FILE_QUIT, 4-24, 4-56
M_XOR, 11-10, 15-37
Macintosh

control colors, 8-58
control mnemonics, 8-65
look-and-feel of list boxes, 8-18
native font descriptor, 15-15
operating system symbol, 2-11
PICT format, 12-1, 12-5, 12-15
range vs. thumb proportion size, 13-5
setting file creator, 17-5, 17-8
supported platform, 2-xxiii
tilde (~), 9-7
window system symbol, 2-9
I-17

string functions, 19-25
strscan-generated files, 19-36, 19-49
translating strings, 19-48
XVT applications, 19-14, 19-48
XVT-Design, 19-7
XVT-provided translations, 19-15

locking
global memory blocks, 20-2
shift, 19-13

logical caret, 14-3
logical fonts

attributes, 15-7
creating and destroying, 15-10
definition, 15-2
function, 15-4
how mapped to physical, 15-9, 15-26
mapping to print font, 15-9, 15-23
selecting, 15-30
setting and getting for a control, 8-57

Mac-Japanese, 19-15
Mac-Roman, 19-15, A-8
macros

LOCAL_C_STR, 19-36
NOREF, B-4
XRC_RECT, 5-8
XVT_CALLCONV1, 2-7, 18-4, 19-45,

19-56, 20-3
XVT_LOCALIZABLE, 19-36

main, 2-4
makefile

application, 1-6, 1-8
example, 19-9

malloc, 16-3, 20-1
manifest constants, for building help source, 22-23
manipulating

dialogs, 7-7
menus, 9-6
windows, 6-23

XVT Portability Toolkit Guide

I-18

manual, conventions used in, 2-xviii
mapped font attributes, 15-9
mappers

application-supplied font, 15-21
font, 15-3
native description font, 15-21
XRC font, 15-21
XVT default font, 15-21

mapping fonts
automatically, 15-22
discussion, 15-5
font mapping controller, 15-19
manually, 15-22
See Also font mappers, font mapping

margins
help topics, 22-19
text edits, 8-46

markup language, for XVT online help, 1-11
masking

constants, 4-14
events, 3-15, 4-14, 4-49

MAX_MENU_TAG, 4-23, 9-4
MBCS, See multibyte character codeset
memory

accessing, 20-2
allocating, 20-1–20-2
allocating resource, 20-3
benefit of using resources, 5-2

MEN
menu

MEN

MEN
menu

menu_bar_ID, 2-5
not supported in modal window, 6-9
task window, 6-4
top-level windows, 6-8

menus
accelerators, 4-19
attributes, 9-6
cascading, 9-1
creating without resources, 9-6
defined, 3-1, 9-3
defining as resources or data structures, 9-4
Edit, 16-5
event handling, 3-16
events, 9-4
File, 9-2
Font/Style, 4-31, 9-2, 9-8, 15-6, 15-33
Help, 9-2, 22-20
help, 22-10
hierarchical, 9-1, 9-3
manipulating, 9-6
online help, 22-10, 22-13
pop-up, 9-3, 9-8
pull-down, 9-3
replacing, 9-5
resource-based, 3-6, 9-2
selections, 4-23
separators, 9-8
setting item string, 9-7
heaps, 20-1
limitations can affect printing, 18-4
managing, 20-2
structures in, 7-5
U, 3-7
 items
checking, 9-7
defined, 9-3
enabling, disabling, 9-8
U_ITEM
array must end with an extra item, 9-6
checking, 9-5–9-7
pop-up menus, 9-8
UBAR, 3-6
bars
defined, 9-3
eliminating, 3-10

standard, 9-2
submenu, 9-3

metrics
display and system, 10-7
font, 15-8, 15-35

MIT Compound Strings, not supported, 19-14
mnemonic characters

Control key, 4-19
extracting, 8-66
trapping, example, 8-67
See Also keyboard mnemonics

mnemonics
controls, 8-65
in GUI, 6-14
internationalization, 19-10
See Also keyboard mnemonics

modal chain (of modal windows and/or dialogs),

Index

6-9
modal dialogs

and online help, 22-18
discussion, 7-2
invisible or disabled, 3-11

modal window
behavior, 6-10
compared to document window, 6-10
creation flags, 6-9
creation rectangle, 6-10
discussion, 6-6, 6-8
keyboard navigation, 6-10
look-and-feel, 6-9
parent window, 6-9

modality, 3-3, 7-1
modeless dialogs, 7-4
modifier keys

passed in the E_CHAR event, 4-18
See Also keyboard modifiers

module, header and source files, 1-6
monochrome

images, 12-3
monitors, 11-3
XVT/Mac, 8-61–8-62

Motif
control colors, 8-58

definition, 19-13
internationalization, 19-14, 19-23–19-25

multibyte character encoding scheme, See
multibyte character codeset

multibyte strings
can be in SLISTs, B-1
changes to PTK, 19-16

multibyte-aware applications
internationalization and localization, 19-14
processing characters, 4-17, 19-29
replacement ANSI string functions, 19-39

multi-level font mapping, 15-5

N
NAPI, 2-2
native

access functions, 1-5
binary help file, 22-3
color schemes, 8-59
description mapper, 15-21
GUI events, 4-1–4-2
GUI system, 4-14, 4-15
GUI windowing systems, 6-2, 6-11
help compiler, 22-2
help viewer, 22-3
operating system, 4-55
I-19

look-and-feel, 8-65
range vs. thumb proportion size, 13-5
top-level window, 6-6
UIDPATH environment variable, 19-32
window system symbol, 2-9

mouse
buttons, 4-54
current position, 14-1
cursor, 4-48
double-click, 4-13, 4-44, 8-18, 15-37
dragging, 15-36
events, 4-44, 4-46, 4-48, 4-54, 15-36
movements, 4-49
trapping, 4-47, 14-2

moving windows and dialogs, 3-20
MS-Windows

BMP, 12-5, 12-15
BMP format, 12-1

multibyte character codeset

window manager events, 4-1
native font descriptors

contents of the string, 15-15
logical fonts, 15-8, 15-26
physical fonts, 15-15
platform-specific parameters, 15-16, 15-27
PostScript printing, 15-16

native_descriptor (font), 15-8, 15-16, 15-19
navigation, See keyboard navigation
nesting, windows, 6-15
NO_HELP_RESOURCES, 22-13
NO_STD_HELP_MENU, 22-14
Node-locked licenses, 2-xxvii
non-portable

events, 4-2
special characters, 19-35
See Also native

non-square pixels, 10-7
NOREF, B-4

XVT Portability Toolkit Guide

I-20

normalized application programming interface,
See NAPI

Norwegian
character codeset, A-7
characters, 19-19

notebook controls, 8-30
notebooks

attributes, 8-34
controls, 8-1
creation, 8-31
face, 8-31
page, 8-31
tab, 8-31

notes, posting, 7-6
NULL_FNTID, 8-57, 15-19
NULL_TXEDIT, 8-47
NULL_WIN, 3-18, 6-7, 15-33

O
object-click help, 22-9, 22-14, 22-18
objects

API, 2-2
attributes, 1-2
destroying, 3-21
hiding, 3-20
structure-based, 3-7
visible, 2-3, 3-20
See Also GUI objects

octal,
offset
onlin

internationalization issues, 22-24
invoking, 22-9
keywords, 22-8
manifest constants, 22-23
markup language, 1-11
modal dialogs, 22-18
native binary files, 22-3
native compilers, 22-2
native help viewer, 22-3
native text files, 22-2
navigation controls, 22-5
object-click, 22-9, 22-18
portable binary files, 22-1
predefined topics, 22-21
reserved topic identifiers, 22-20
resources, 19-54, 22-13
searching for topics, 22-8
source files, 22-18, 22-24
spot help, 22-9
standalone viewers, 22-12
system components, 22-1
text files, 22-1
topics, 22-4, 22-8, 22-12, 22-14, 22-15
translated topics, 1-12, A-1
windows, 22-3
XVT help viewer, 22-2

Open dialog, 17-7
operating system
 5-10
, of rectangles, 10-6
e help
adding to applications, 22-11
application-bound viewer, 22-7, 22-12
association tables, 22-15
bitmaps, 22-24
bookmarks, 22-3–22-4, 22-7
closing file, 22-14
context-sensitive, 22-9, 22-14
creating, 1-11
disassociating topics, 22-17
displaying topics, 22-10, 22-17
E_HELP events, 4-37
formatting, 22-19
header files, 22-12
help engine, 22-2

feature symbols, 2-10
test symbols, 2-9

operators, 5-11
optimizing, XVT applications, 2-14
Option key, 4-18
origin

document, 13-4, 13-13
window system, 10-1

ovals, drawing, 11-13
ownership, of fonts, 15-11

P
pages

printing, 18-3
scrolling, 8-20
set up, 18-8

palettes, 12-4, 12-11–12-13

Index

paragraphs, in text edit objects, 8-44
parameters, when checked, 2-14
parent windows, 3-18, 6-9, 6-16
Paste command, 4-29, 16-5
PAT_HOLLOW, 4-52, 11-6
PAT_RUBBER, 4-52, 11-6
PAT_SOLID, 11-6, 11-8, 15-36
PAT_STYLE, 11-6, 11-7
pathnames

internationalization, 19-43
size, 17-2, 19-24
XRC, 5-10

patterns
aligning, 13-15
pen, 11-6
stipple, 11-3

pens
CPEN, 11-5
PAT_HOLLOW, 11-6
PAT_RUBBER, 11-6
PAT_SOLID, 11-6
styles, 11-7

performance, improving, 2-14
Persian, character codeset, A-8
physical

carets, 14-3

pixmaps
application data, 12-9
assigning palettes, 12-13
color formats, 12-3
copying, to and from images, 12-7
creating, 12-9
data types, 12-8
destroying, 3-21, 12-9
drawing, 12-11
functions that accept, 12-10
images, 12-2, 12-8
in print windows, 12-11
initializing, 12-9
manipulating, 12-10
not all levels supported, 12-5
transferring, 12-14

platform-specific
attributes, 2-6
books, from XVT, 2-xvi
formatting, 5-8
icons, 8-39
keyboard data, 4-20
menus, 9-2
task window, 6-3
wait cursor, 14-1

PNT type, 10-4, 19-47
I-21

fonts, 15-2, 15-15, 15-19
screen, 10-1
See Also fonts

PICT, Macintosh, 12-1, 12-5, 12-15
PICTURE, 11-17
pictures

accessing, 11-16
creating, 11-17
encapsulated, 11-13, 11-16, 16-2
on clipboard, 16-2
scaling, 11-16

pies, drawing, 11-13
pixels

definition, 10-1
devices, 10-1
display and system metrics, 10-7
images, 12-2
in text, 4-40
XRC, 5-6

points
data type, 10-4
translating, 10-3

Polish, character codeset, A-6
polygons

definition, 11-15
drawing, 11-13

polylines
definition, 11-15
drawing, 11-13

polymorphism, 2-3
pop-up menus

checking menu item, 9-7
definition, 9-3
discussion, 9-8

pop-up windows, 22-4
portable

attributes, 1-5, 2-6, 15-7
filenames, 17-2

XVT Portability Toolkit Guide

I-22

font attributes, 15-7
images, See images

porting applications, 1-4
Portuguese, character codeset, A-7
positioning

carets, 14-4
GUI objects, 19-47, 19-51

posting
About box, 7-6
notes, 7-6

PostScript and native font descriptors, 15-16
predefined

clipboard formats, 16-1
dialogs, 5-2, 7-6, 22-20
help topic information, 22-20
resources, 5-2, 5-5

print records
creating default, 18-2
destroying, 18-2
validity, 18-2

print threads, implementing, 18-5
print windows

always a child window, 6-8
drawing images and pixmaps, 12-11
event handlers, 4-3, 4-7
printing to, 18-3

PRINT_RCD, 18-2
printing

progr

C, 1-5
C++, 1-8

propagation, of characters, 8-66
properties, of text edit object, 8-48
proportional scrollbars, 4-41, 6-21
prototypes, for functions, 2-12–2-13
PTR_LONG, 6-19
pull-down menus, 9-3
push buttons, 8-1, 8-7, 8-22

Q
questions, asking user, 7-6
quitting an application, 4-55, 4-57

R
radio buttons

discussion, 8-10
events, 4-26
groups, 8-10
shown in figure, 8-1

range, scrollbar, 4-39, 6-21, 8-20, 13-3, 13-5, 13-9
RCT type, 10-4, 19-47
read-only text, 8-42
realloc, 20-1
rectangles

adding offset, 10-6
around controls, 8-28
border, 8-44
aborting, 18-9
bands, 18-4
calling XVT functions during, 18-5
data type, 18-2
driver issues, 18-10
fonts, 15-9, 15-23
initiating and terminating, 18-10
metrics, 18-8
page setup dialog, 18-8
pages, 18-3
portability, 18-4
PostScript fonts, 15-16
print windows, to, 18-3
restrictions, 18-7
sample function, 18-6
threads, implementing, 18-5
amming languages

bounding, 12-14
clipping, 6-20, 11-11
computing pixel size, 11-14
data type, 10-4
drawing, 6-22, 11-13
drawing rubberband, 4-52
empty, 10-6
filling, 11-13
image or pixmap, 12-14
in XRC, 5-8
intersecting, 10-6
location of pixels, 10-6, 11-14
outlines, 11-14
overlaying, 11-15
specifying size, 4-50
transforming, 4-51
updating, 4-64

Index

view, 8-44
recursion

problems, 4-9–4-10
update and focus events, 4-10, 4-64

regular windows, 6-8
release notes, 2-xvi
renaming include files, 19-7
resizing windows, 3-20, 4-13, 13-7
resource compiler (XVT), See xrc
resource files, 5-2, 19-15, 19-34, 19-50
resource fork, 5-3, 19-32
resource ID, 3-4, 6-12
resource-based

controls, 8-3
dialogs, 3-5, 5-2, 7-4
menus, 3-6, 9-2
windows, 3-5

resources
binary, 5-3
bound at application startup time, 19-32,

19-34
controls, 8-2
creating portable, 5-3
definition, 1-10
discussion, 5-2, 19-32
external, 1-6, 19-45

right-to-left languages, not supported, 19-14
Roman characters, 19-12
rubberbanding (with mouse), 4-52
Russian

characters, 19-19

S
Save button, 4-55
Save dialog, 17-7
saving

documents, 4-57
text in a file, 8-50

SBCS, See single-byte character codeset
SC_LINE_*, 13-10
SC_THUMB, 4-39, 8-20, 13-3, 13-10
SC_THUMBTRACK, 4-39, 8-20, 13-3, 13-10
scaling

dialogs and controls, 5-7
E_SIZE events, 4-59
fonts, 15-9, 15-23
images and pixmaps, 12-14

screen
physical, 10-1
size, 10-7
window, 4-7, 6-2

SCREEN_WIN, 3-18, 6-2, 10-1, 10-3
I-23

fonts, 15-11, 15-25
GUI objects, 3-4
ID numbers, 1-10, 5-2, 19-5
internationalized applications, 5-6, 19-35,

19-45
memory allocation, 20-3
menu, 9-2
online help, 22-13
predefined, 5-2, 5-5
pre-translated, 1-10, A-1
rules for coding, 5-5
sizing and spacing, 5-8
system-specific, 5-2
window, 6-12
See Also XRC

return values, error, 21-1
re-wrapping paragraphs of text, 8-48
RGB model, 11-2, 12-3
RIDs, 5-2

scripts, XRC, 5-9, 5-12
SCROLL_CALLBACK, 19-16
SCROLL_CONTROL, 8-20
scroll_sync, 13-6
scrollbars

activating, deactivating, 4-30
client area, 6-11
color, 8-59
controls, 8-20
do_scroll, 13-10
E_SIZE events, 4-59
events, 4-38
maintaining settings, 13-7
proportional, 4-39, 4-41, 6-21
range, 6-21, 13-3, 13-9
shown in figure, 4-39, 8-1
thumb position, 13-4
updating thumb, 8-51
vertical, horizontal, 6-21

XVT Portability Toolkit Guide

I-24

scrolling
automatic, 8-51, 14-3
calculating amount, 13-10
discussion, 6-21
dynamic text, 13-16
example, 4-40
manual, 8-51
sample algorithms, 13-6
spreadsheet columns, 13-16
terminology, 13-2
text, 13-1
text edit objects, 8-51
text strings, 8-13
view in window, 13-10, 13-13

secondary color in controls, 8-59
selecting

from list, 8-24
from menu, 9-1
from pop-up list, 8-25
from scrollable list, 8-16
logical fonts, 15-30
text, 15-36–15-37
text in text edit, 8-50

selection lists, 8-22, 8-24
semichars, 5-7
separators, menu, 9-8
serializing fonts, 15-37
SEV_* error classifications, 21-3
Shift

shift_
Shift-

shift-
shutd
single

internationalization, 19-14
size

box, 4-30
carets, 14-4
events, 4-58
font, 15-7
text edits, 8-52
window, 6-11

sizing
GUI objects, 5-8
See Also positioning

SLIST
definition, 8-16
discussion, B-1
example, 8-19, 8-67
functions, B-3
keyboard navigation, 6-14
list buttons, 8-22

SLIST_ELT, 8-19, 8-67, B-2
source files, 1-6
spacing and sizing resources, 5-8
Spanish

character codeset, A-6
characters, 19-19

spot help, 22-9, 22-14
spreadsheets, scrolling, 13-16
stacking order, of windows, 3-19
standalone viewers, 22-12
key
E_CHAR events, 4-18
E_COMMAND events, 4-24
E_MOUSE_UP events, 4-54
used to select text, 8-50
view, 13-6
JIS

character codeset, 19-14
definition, 19-11
invariant character codeset, 19-53
Japanese localization, 19-15, A-6
See Also JIS
sequence method of encoding, 19-13
own, system-wide, 4-56
-byte character codeset

ANSI definition, 19-23
definition, 19-13

standard menus, 9-2
startup procedure, for XVT applications, 19-55,

20-3
state, of controls, 8-8
stateful encoding, 19-13
static text, 8-1, 8-12
stipple patterns, 11-3
strdef.h file, 19-5, 19-8, 19-38
stream objects, for processing input data, B-3
string functions

ANSI, 19-39
character pointers, 19-41
new features in Release 4.5, 19-16
string internationalization, 19-43
XVT, 19-25, 19-40, B-1

string literals
character codeset issues, 19-35

Index

extracting, 19-35
internationalization and localization, 19-2

string XRC statement, 19-35
strings

buffer sizes, 19-42
elements, B-2
formatting locale-specific, 19-43, 19-49
in dialogs or windows, 8-12
inputting, 8-13
list, B-1
manipulating pointers, 19-41
menu items, 9-7
parsing, 19-28
pattern matching, 19-28
processing, 19-24, 19-29, 19-39
prompting for, 7-6
translating, 19-48
XRC, 5-9
width of text, 15-35

strres.h file, 19-4, 19-7, 19-8, 19-38
strscan

generated files, 19-36, 19-49
internationalization, 19-36
rename include files before using, 19-7
using, 19-7, 19-36

structure-based

operating system, 2-9
window system, 2-9

system
attributes, 1-5, 2-6
font, 15-28
memory management functions, 20-2
metrics, 10-7
shutdown, 4-56

SZ_FNAME constant
definition, 17-2
example, 17-4
filename sizes, 19-24

SZ_LEAFNAME constant
definition, 17-2
example, 17-4
filename sizes, 19-24

T
tabs

help topics, 22-19
text edit objects, 8-50
XRC strings, 5-10

tags
FONT_MENU_TAG, 9-8
MAX_MENU_TAG, 4-23, 9-4
menu, 9-6
I-25

controls, 8-3
objects, 3-7
windows, 6-12

style_mask (font), 15-7
SUBMENU, 3-7
submenus, definition, 9-3
subsidiary menus, 9-1
SunOS

operating system symbol, 2-10
support

XVT customer, 2-xxi, 2-xxvii
Swedish

character codeset, A-7
characters, 19-19

switches, 8-8
symbols

compiler, 2-12
file system, 2-9
international, 19-51

MENU_ITEM, 9-5–9-6
task window

discussion, 6-3
E_CHAR events, 4-17
event handler, 4-3, 4-7, 4-27
localization, 19-22, 19-55
menubar, 6-4
menus, 9-1
parent, 3-18

TASK_WIN, 3-18, 4-13, 6-4, 10-1, 10-3
taskwin_title, 2-5, 19-22
technical notes, 2-xvii
templates, makefile, 1-6
terminating

applications, 4-28, 7-6
dialogs and windows, 3-12
GUI objects, 3-4

terminology
GUI, 3-1, 8-1

XVT Portability Toolkit Guide

I-26

image, 12-2
internationalization and localization, 19-9

text
baseline, 10-4
changing in text edit, 8-49
clearing in text edit, 8-51
clipboard, 16-1
drawing, 11-13, 15-1
inputting, 8-13
loading into text edit, 8-49
objects, displaying, 4-33
opaque and transparent, 11-9
retrieving from text edit, 8-50
re-wrapping, 8-48
scrolling, 8-13, 13-1
scrolling dynamic, 13-16
selecting, 8-50, 15-36–15-37
width, 15-35
working with, 15-35

text edit
auto-scrolling, 8-45, 8-51
changing text, 8-49
character limit, 8-46
colors, 8-48
determining if active, 4-18
E_CHAR events, 4-18
event handling, 8-48
functionality listed, 8-42

o
o
o
o
r
s
s
t
t
w

text insertion mode, 14-3
threads, See multi-threading
thumb

color, 8-59
do_scroll function, 4-43
position, 13-4, 13-7
proportion, 13-4, 13-7
scrollbar, 6-21, 8-20
shown in figure, 4-39

tilde (~)
keyboard mnemonics, 8-65
meaning of in menu, 6-14, 9-7

time/date, method of representing, 19-10, 19-43
timers

E_TIMER events, 4-61
intervals, 4-62
setting, 4-61
shared, 4-62
turning off, 4-61

Times font, 15-28
titlebars

activating, deactivating, 4-30
client area, 6-11

titles
GUI object, 3-19
window, 6-20

TL_BRUSH_*, 11-9
TL_BRUSH_WHITE, 11-11
loading text, 8-49
margins, 8-46
objects, clearing text, 8-51
objects, creating, 8-45
objects, destroying, 8-51
objects, getting properties, 8-49
objects, not classified as visible objects, 3-21

bjects, not native controls, 8-42
bjects, setting properties, 8-48
bjects, shown in figure, 8-1, 8-43
bjects, supported functions, 8-41
etrieving text, 8-50
electing text, 8-50
ize limits, 8-52
ab characters, 8-50
erminology, 8-44
ord wrap, 8-45, 8-49

TL_PEN_*, 11-7
TL_PEN_BLACK, 11-11
topic

predefined help, 22-21
threads, 22-4
windows, 22-3

top-level windows, 3-18, 6-5, 6-8, 6-16, 9-1, 10-1
top-to-bottom languages, not supported, 19-14
translation, of points to a different coordinate

system, 10-3
translation, to widely spoken languages, 1-10,

1-12, A-1
trapping

mnemonic characters, 8-67
mouse, 4-47, 14-2
See Also hook functions

traversal, 3-3

Index

TX_* constants, 8-45
TXEDIT, 8-46
typefaces, 15-2
types

char, ANSI type, 19-23
DATA_PTR, 19-24
FILE_SPEC, 19-16
PNT, 19-47
RCT, 19-47
SCROLL_CALLBACK, 19-16
W_MODAL, 6-8
wchar_t, ANSI type, 19-13, 19-23
WIN_DEF, 3-7
WIN_TYPE, 6-7
XVT_BYTE, 19-24
XVT_COLOR_COMPONENT, 8-59
XVT_COLOR_TYPE, 8-59
XVT_CONFIG, 19-22, 19-33
XVT_ENUM_CHILDREN, 6-16
XVT_PALETTE_TYPE, 12-12
XVT_POPUP_*, 9-9
XVT_POPUP_ALIGNMENT, 9-9
XVT_UBYTE, 19-24
XVT_WCHAR, 4-17, 19-23, 19-41, 19-44

U

colors stored externally, 19-46
compiler, 5-3
compiling, 5-12
coordinate units, 5-6
creating a window, 3-5, 6-12
creating portable resources, 5-3
defining menus, 9-4
font mapping, 5-13, 15-21, 15-25, 15-28
font resource types, 15-26
help resources, 22-13
icons stored externally, 19-45
include files, 19-19
internationalization, 19-32
internationalization example, 19-46
language specification, 5-9
localization, 19-50
localization example, 19-57
menus, 9-2, 9-6
object definitions, 3-4
rectangles, 5-8
resource file binding, 19-32
resource files, 19-34
resources stored externally, 1-6, 19-45
sample script, 5-13
script, 5-9, 5-12
shell files, 1-8
I-27

UCHAR_MAX constant, 19-30
UIDPATH Motif environment variable, 19-32
Unicode

definition, 19-11
not supported, 1-12, 19-14

UNIT_TYPE, 5-6
XVT Resource Compiler, See XRC
UNIX

Extended Unix Code (EUC), 19-14
file system symbol, 2-9
makefile example, 19-9
multibyte encoding scheme, 19-11
System V, 2-10

unmapping fonts, 15-16, 15-22
updating, windows, 6-19
uppercase characters, 4-18, 19-28
XRC

adjusting objects, 19-51
C application programs, 1-10

strscan utility, 19-36
using, 5-1
window geometry example, 19-47

XRC statements
font, 15-11, 15-15, 15-26, 19-46
font_map, 15-11, 15-15, 15-27, 19-46
icon, 19-45
image, 19-45
string, 19-35
userdata, 19-46, 19-47

XRC_DEST_* macros, 5-8
xrc_plat.h file, 5-5, 5-12
XRC_RECT macro, 5-8
XRC_SRC_* macros, 5-8
xrc.h file, 5-5, 5-12, 19-21, 19-50, 22-13
user

events, 4-3
invoked actions, 8-7

USERDATA, 3-5, 6-12, 7-5

XVT Portability Toolkit Guide

I-28

userdata XRC statement, 19-46–19-47
utility programs

xrc, 1-10, 19-52
errscan, 21-6
helpc, 1-11, 19-52
strscan, 19-36

V
validating input arguments, 21-1
variable, failure to reference, B-4
vertical scrollbar

do_scroll function, 4-43, 13-10
dynamic text windows, 13-16
example, 4-41
mapping from lines to range, 13-3
range, 13-3
shown in figure, 4-39
thumb proportion size, 13-5

view rectangles, 8-44
viewers, help, 22-12
virtual key codes, See key codes
virtual_key, 19-30
visible objects

can focus be assigned, 3-19
creation flags, 3-20
polymorphic, 2-3
text edit objects aren’t, 3-21

vobj (visible object), 2-3, 3-20

W
W_D
W_D
W_M
W_N
W_PL
W_P
waitin
warni
WC_
WC_
wcha
WD_
WD_
white
wide

casting XVT_WCHAR characters to char,
4-17, 19-30

characters and strings, 19-23
definition, 19-13
discussion, 19-41
support for character codeset, 19-14

WIN_DEF type
control colors, 8-58
control font, 8-56
definition, 3-7
example, 3-9
logical fonts in, 15-11
setting mnemonic characters, 8-65
structure-based controls, 8-3
structure-based windows, 6-12

WIN_TYPE type
defining control types, 4-25, 8-4
definition for windows, 6-7
dialog modality, 7-1

WINDOW
associated help topics, 22-15
creating windows, 6-11
discussion, 6-7
events, 4-1

windows
act as container objects, 3-1
application data, 6-18
applying a function, 6-16
BL type, 6-8
OC type, 6-8
ODAL type, 6-8
O_BORDER type, 6-8
AIN type, 6-8

RINT type, 6-8
g cursor, 14-2
ngs, 21-3
* control types, 4-25
TREEVIEW, 8-52
r_t, ANSI type, 19-13, 19-23
MODAL type, 7-5
MODELESS type, 7-5
space, 5-10, 19-28
characters

attributes, 3-10, 6-8
background color, 6-22
borderless, 6-8
borders, 6-7
child, 6-6, 6-15, 10-1
client area, 6-11, 10-3
colors, default, 11-9
compared to dialogs, 3-2
creating, 6-8, 6-11
creation flags, 3-20
decorations, 3-3, 6-8, 8-58
defined, 3-1
descriptor, 6-7
destroying, 3-21
dimensions, 3-18
document, 6-8
drawing, 3-3, 6-19

Index

drawing tools, default, 11-11
dynamic, 3-12, 6-11
E_CREATE events, 4-27
edit, 8-41
enabling, disabling, 3-20
enumerating, 6-16
event handlers, 3-14, 4-7, 4-63, 6-13
events, 4-3
font, 15-8, 15-18
ghost, 6-4
help, 22-3
invalidating disjoint areas, 4-64
keyboard focus, 3-18, 6-22
keyboard navigation, 6-14
listing, 6-16, 6-22
logical fonts, 15-17
management events, 4-9
manipulation functions, 6-23
mnemonic characters, 8-66
modal, 6-6, 6-8
moving, 3-20
nesting, 6-15
palettes, 12-13
parent, 3-18, 6-16
pop-up, 22-4
print, 4-3, 4-7, 6-8, 12-11

translating, 10-3
types of, 6-1, 6-7
updating, 6-19
updating text, 4-65
without menubar, 3-10
without menus, 9-2

Windows 1252 character codeset, 19-15
Windows 95

color, background and foreground, 8-60
Winhelp

conditional compilation, 22-23
word wrap

help topics, 22-19
text edits, 8-45, 8-49

write, 11-18
WSF_* flags, 3-10, 3-21, 4-22, 4-38, 6-9
WSF_HSCROLL, 6-21
WSF_NO_MENUBAR, 9-2
WSF_PLACE_EXACT, 6-10
WSF_VSCROLL, 6-21

X
X Window System

color table considerations, 12-12
native font descriptor, 15-15
scaling images and pixmaps, 12-14
I-29

printing, 18-3
regular, 6-8
repairing damage, 7-4
resizing, 3-20, 4-13, 13-7
resource-based, 3-5, 6-12
screen, 4-7, 6-2
scrollbars, 6-21
scrolling view, 13-10, 13-13
setting drawing font in, 15-18
specific initializations, 6-18
stacking, 3-19
structure-based, 6-12
system symbols, 2-9
task, 3-18, 4-3, 6-3, 9-1
task window parent, 3-18
termination operations, 6-19
titles, 6-20, 8-56
topic, 22-3
top-level, 3-18, 6-5, 6-8, 6-16, 9-1, 10-1

xbm and xpm file formats, 12-1, 12-5, 12-15
XVT

configuration attributes, 19-33
default font mapper, 15-21, 15-28
Development Solutions for C and C++, 1-2
documentation, XVT Platform-Specific

Books, 2-xvi
documentation, XVT Portability Toolkit

Guide, 2-xvi, 1-4
invoking, 2-4
PowerObjects, 2-xvii
product updates, 2-xxv
Software Customer Support, 2-xxi, 2-xxvii

XVT applications
localizing, 19-48
porting, 1-4
specifying locale, 1-12, 19-32
startup procedure, 19-55, 20-3

XVT Portability Toolkit

XVT Portability Toolkit Guide

I-30

API, 2-1
controls, 8-7
definition, 1-10
discussion, 1-1
event summary table, 4-4
events, 1-2
Font Selection dialog, 15-30
Guide, 2-xvi, 1-4
help engine, 22-2
help viewer, 22-2–22-3
initializing library, 2-4
language support, 1-12, A-1
layers, 2-14
portable image file format, 12-1
PTK API elements, 19-17
WINDOWs, 6-7

xvt_app_allow_quit, 4-56–4-57
xvt_app_create

ATTR_RESOURCE_FILENAME, 19-22
configuration attributes, 19-33
definition, 19-22
invoking XVT, 2-5
localization example, 19-57
memory management functions, 20-3
resource file binding, 19-32
setting default application control font, 8-57
system attributes, 2-6

xvt_app_destroy, 4-55, 4-56, 4-57
xvt_a
xvt_a
xvt_a
xvt_a
xvt_a
xvt_a
XVT
XVT

xvt_c
xvt_c
xvt_c
xvt_c
xvt_c
xvt_c
xvt_c
xvt_c

XVT_CC_*, 2-12
XVT_COLOR_* constants, 8-59
XVT_COLOR_COMPONENT

example, 8-64
type, 8-59

XVT_COLOR_TYPE type, 8-59
XVT_CONFIG

ATTR_RESOURCE_FILENAME, 19-22
initializing, 2-5
localization example, 19-57
overriding, 19-22
resource file binding, 19-33
structure and fields, 2-5

XVT_CONFIG type, 19-22
xvt_ctl_check_radio_button, 4-26, 8-10
xvt_ctl_create, 8-3, 8-65
xvt_ctl_create_def, 3-7, 3-11, 8-3, 8-39, 8-65
xvt_ctl_get_colors, 8-64
xvt_ctl_get_font, 8-57, 15-10, 15-17
xvt_ctl_get_id, 3-21, 8-47
xvt_ctl_get_text_sel, 19-16
xvt_ctl_set_checked, 4-26, 8-8
xvt_ctl_set_colors, 8-63, 8-64
xvt_ctl_set_font, 8-57, 15-17
xvt_ctl_set_text_sel, 8-27, 19-16
xvt_debug*, 21-8
xvt_defs.h file, 19-30
XVT_DIR, 2-xxvii
pp_escape, 18-8
pp_file_count, 17-6
pp_get_default_ctools, 11-11
pp_get_file, 17-6
pp_process_pending_events, 4-9, 4-10, 4-64
pp_set_file_processed, 17-6
_BYTE type, 19-24
_CALLCONV1, 2-7, 18-4, 19-45, 19-56,

20-3
aret_set_visible, 15-37
b_alloc_data, 16-3, 20-3
b_close, 16-3, 16-4
b_free_data, 16-3, 20-3
b_get_data, 16-2, 16-4, 16-6, 19-16
b_has_format, 16-4, 16-6
b_open, 16-3, 16-4
b_put_data, 11-17, 16-3, 16-6, 19-16

xvt_dlg_create_def, 3-7, 3-11, 3-12, 7-2, 7-5, 8-65
xvt_dlg_create_res, 3-5, 4-9, 5-2, 7-2, 7-4, 8-3
xvt_dm_post_*, 7-6
xvt_dm_post_dir_sel, 17-8
xvt_dm_post_file_open, 17-8
xvt_dm_post_file_save, 17-8
xvt_dm_post_font_sel, 15-30
xvt_dm_post_note, 4-10
xvt_dm_post_page_setup, 18-8
xvt_dm_post_string_prompt, 19-16
xvt_dwin_clear, 6-22, 12-9
xvt_dwin_close_pict, 11-17
xvt_dwin_draw_*, 11-12
xvt_dwin_draw_image, 12-7, 12-8, 12-14
xvt_dwin_draw_pict, 11-13, 11-17, 11-18
xvt_dwin_draw_pmap, 12-9, 12-11, 12-14
xvt_dwin_draw_rect, 4-52, 15-36

Index

xvt_dwin_draw_text, 10-4, 11-13, 15-18, 15-26,
19-16

xvt_dwin_get_clip, 6-20
xvt_dwin_get_draw_ctools, 11-7–11-9, 11-11
xvt_dwin_get_font, 15-10, 15-13, 15-17
xvt_dwin_get_font_app_data, 15-13
xvt_dwin_get_font_family, 15-13, 19-16
xvt_dwin_get_font_family_mapped, 15-13, 19-16
xvt_dwin_get_font_metrics, 15-13, 15-35
xvt_dwin_get_font_native_desc, 15-13, 19-16
xvt_dwin_get_font_size, 15-13
xvt_dwin_get_font_size_mapped, 15-13
xvt_dwin_get_font_style, 15-13
xvt_dwin_get_font_style_mapped, 15-13
xvt_dwin_get_text_width, 15-35, 19-16
xvt_dwin_invalidate_rect, 4-59, 4-63–4-64, 6-19,

18-6
xvt_dwin_is_update_needed, 4-65, 18-4
xvt_dwin_open_pict, 11-17
xvt_dwin_scroll_rect, 4-39, 4-43, 4-63–4-64,

6-20, 11-13, 13-6, 13-13
xvt_dwin_set_back_color, 11-8
xvt_dwin_set_caret_visible, 4-30, 14-3
xvt_dwin_set_cbrush, 11-9, 11-11
xvt_dwin_set_clip, 6-20, 11-12
xvt_dwin_set_cpen, 11-7, 11-11

xvt_errmsg_get_text, 19-16
XVT_ERRMSG_HANDLER, 21-4
xvt_errmsg_pop_handler, 21-5
xvt_errmsg_push_handler, 21-5
xvt_errmsg_sig, 21-2, 21-4
xvt_errmsg_sig_if, 21-2
xvt_event_is_virtual_key, 4-19–4-21
XVT_FILE_ATTR_*, 17-5
xvt_fmap_get_families, 15-19, 15-32
xvt_fmap_get_family_sizes, 15-20, 15-32
xvt_fmap_get_family_styles, 15-20, 15-32
xvt_fmap_get_familysize_styles, 15-20, 15-32
xvt_fmap_get_familystyle_sizes, 15-20, 15-32
XVT_FNTID, 15-1, 15-10, 15-12, 15-19, 15-30,

15-33, 15-34
xvt_font_copy, 4-32, 15-12, 15-18, 15-34
xvt_font_create, 15-10, 15-25
xvt_font_deserialize, 15-37
xvt_font_destroy, 15-11
xvt_font_get_app_data, 15-13
xvt_font_get_family, 15-13, 19-16
xvt_font_get_family_mapped, 15-13, 15-23,

19-16
xvt_font_get_metrics, 15-13, 15-35, 15-36
xvt_font_get_native_desc, 15-13, 15-23, 15-26,

19-16
I-31

xvt_dwin_set_draw_ctools, 11-7, 11-8–11-9,
11-10, 11-11

xvt_dwin_set_draw_mode, 11-10, 11-11
xvt_dwin_set_font, 11-11, 15-17, 15-34
xvt_dwin_set_font_app_data, 15-12
xvt_dwin_set_font_family, 15-12
xvt_dwin_set_font_native_desc, 15-12, 15-16
xvt_dwin_set_font_size, 15-13
xvt_dwin_set_font_style, 15-13
xvt_dwin_set_fore_color, 11-9
xvt_dwin_set_std_cbrush, 11-9
xvt_dwin_set_std_cpen, 11-7
xvt_dwin_translate_points, 3-18
xvt_dwin_update, 4-10, 4-43, 6-20, 13-6, 18-6
XVT_ENUM_CHILDREN type, 6-16
xvt_env.h file, 2-8, 2-9, 2-12
XVT_ERRID, 21-3
XVT_ERRMSG, 21-4
xvt_errmsg_def_*, 21-3

xvt_font_get_size, 15-13
xvt_font_get_size_mapped, 15-13, 15-23
xvt_font_get_style, 15-13
xvt_font_get_style_mapped, 15-13, 15-23
xvt_font_has_valid_native_desc, 15-16
xvt_font_is_mapped, 15-23
xvt_font_is_print, 15-23
xvt_font_is_scalable, 15-23
xvt_font_is_valid, 15-19
xvt_font_map, 15-19–15-22
xvt_font_map_using_default, 15-23
XVT_FONT_MAPPER, 15-23
xvt_font_serialize, 15-37, 19-16
xvt_font_set_app_data, 15-12
xvt_font_set_family, 15-12
xvt_font_set_native_desc, 15-12, 15-15–15-16,

15-26
xvt_font_set_size, 15-12
xvt_font_set_style, 15-12

XVT Portability Toolkit Guide

I-32

xvt_font_unmap, 15-23
xvt_fsys_build_pathname, 17-3–17-4
xvt_fsys_convert_dir_to_str, 17-3
xvt_fsys_convert_str_to_dir, 17-3, 19-16
xvt_fsys_get_dir, 17-3
xvt_fsys_get_file_attr, 17-5
xvt_fsys_list_files, 17-7, B-3
xvt_fsys_parse_pathname, 17-2–17-4
xvt_fsys_restore_dir, 17-3
xvt_fsys_save_dir, 17-3
xvt_fsys_set_dir, 17-3
xvt_fsys_set_dir_startup, 17-3
xvt_fsys_set_file_attr, 17-4, 17-5
xvt_get_font_metrics, 15-35
xvt_gmem_alloc, 16-3, 20-2
xvt_gmem_free, 20-2
xvt_gmem_get_size, 20-2
xvt_gmem_lock, 20-2
xvt_gmem_realloc, 20-2
xvt_gmem_unlock, 20-2
xvt_help_begin_objclick, 22-18
xvt_help_close_helpfile, 22-14
xvt_help_disassoc_all, 22-17
xvt_help_display_topic, 22-10, 22-17
xvt_help_end_objclick, 22-18
XVT_HELP_INFO, 22-14
xvt_help_open_helpfile, 22-14
xvt_help_set_menu_assoc, 22-15
xvt_h
XVT
xvt_h
xvt_h
xvt_h
xvt_h
xvt_h
xvt_h
xvt_h
xvt_h
xvt_h
xvt_h
xvt_h
xvt_h
XVT
xvt_i
xvt_i

xvt_image_fill_rect, 12-6
XVT_IMAGE_FORMAT, 12-6
xvt_image_get_clut, 12-8
xvt_image_get_from_pmap, 12-7, 12-9, 12-14
xvt_image_get_ncolors, 12-7
xvt_image_get_pixel, 12-7
xvt_image_get_scanline, 12-7
xvt_image_read, 12-15
xvt_image_read_*, 12-6, 12-15
xvt_image_set_clut, 12-8
xvt_image_set_ncolors, 12-7
xvt_image_set_pixel, 12-7
xvt_image_transfer, 12-7, 12-14
xvt_image_write_bmp, 12-15
xvt_image_write_macpict_to_iostr, 12-15
xvt_iostr_create_fread, B-3
xvt_iostr_create_fwrite, B-3
xvt_iostr_create_read, B-4
xvt_iostr_create_write, B-4
xvt_iostr_destroy, B-4
xvt_iostr_get_context, B-4
xvt_list_*, 8-16, 8-22, 8-25
xvt_list_get_elt, 19-16
xvt_list_get_first_sel, 19-16
xvt_list_get_sel, B-3
XVT_LOCALIZABLE macro, 19-36
XVT_MAX_MB_SIZE constant, 19-25
XVT_MAX_WINDOW_RECT, 6-11
elp_set_win_assoc, 22-15, 22-17
_HELP_VERSION, 22-23
elp.csh file, 19-21, 22-21
elp.h file, 22-20–22-21
elp.xrc file, 22-7, 22-10, 22-13
tml_forward, 8-37
tml_get_url, 8-37
tml_get_url_intercept, 8-37, 8-38
tml_home, 8-37
tml_refresh, 8-37
tml_search, 8-37
tml_set_url, 8-37
tml_set_url_intercept, 8-37, 8-38
tml_stop, 8-37
_IMAGE, 12-5–12-6, 12-9, 12-15
mage_create, 12-6, 20-3
mage_destroy, 12-6

XVT_MEM, 20-3
xvt_mem_alloc, 9-5, 20-1
xvt_mem_free, 12-6, 12-9, 20-1
xvt_mem_realloc, 20-1
xvt_menu_get_font_sel, 15-10, 15-30, 15-33
xvt_menu_get_tree, 9-6
xvt_menu_popup, 9-5, 9-8
xvt_menu_set_font_sel, 4-32, 9-8, 15-30, 15-34
xvt_menu_set_item_checked, 9-7
xvt_menu_set_item_enabled, 9-8
xvt_menu_set_item_title, 9-7
xvt_menu_set_tree, 9-5, 9-6, 9-7
XVT_MOD_KEY_* constants, 4-18
xvt_msgs.h file, 21-7
XVT_NAV navigation object, 6-14
xvt_nav_add_win, 6-14
xvt_nav_create, 6-14

Index

xvt_nav_destroy, 6-14
xvt_nav_list_wins, 6-14
xvt_nav_rem_win, 6-14
xvt_notebk_add_page, 8-32, 8-35
xvt_notebk_add_tab, 8-31, 8-35
xvt_notebk_create_face, 8-32, 8-35
xvt_notebk_create_face_def, 8-32, 8-35
xvt_notebk_create_face_res, 8-32, 8-35
xvt_notebk_enum_pages, 8-35
xvt_notebk_get_face, 8-35
xvt_notebk_get_front_page, 8-35
xvt_notebk_get_num_pages, 8-35
xvt_notebk_get_num_tabs, 8-35
xvt_notebk_get_page_data, 8-35
xvt_notebk_get_page_from_face, 8-35
xvt_notebk_get_page_title, 8-35
xvt_notebk_get_tab_image, 8-35
xvt_notebk_get_tab_title, 8-35
xvt_notebk_rem_page, 8-35
xvt_notebk_rem_tab, 8-35
xvt_notebk_set_front_page, 8-35
xvt_notebk_set_page_data, 8-35
xvt_notebk_set_page_title, 8-35
xvt_notebk_set_tab_image, 8-35
xvt_notebk_set_tab_title, 8-35
XVT_OPT, 2-14

xvt_pmap_destroy, 3-21, 12-9
XVT_POPUP_* types, 9-9
XVT_POPUP_ALIGNMENT type, 9-9
xvt_popup_menu, example, 9-9
xvt_print_close, 18-10
xvt_print_close_page, 18-3
xvt_print_create, 18-2, 18-3
xvt_print_create_win, 18-3
xvt_print_destroy, 18-2, 18-3
xvt_print_get_next_band, 18-4
xvt_print_is_valid, 18-2
xvt_print_open, 18-10
xvt_print_open_page, 18-3
xvt_print_start_thread, 18-5
xvt_rect_*, 10-5–10-6
xvt_rect_set, 15-36
xvt_res_free_menu_tree, 9-5–9-6
xvt_res_free_win_def, example, 3-8, 3-10
xvt_res_get_dlg_def, 3-7, 3-12, 8-56, 8-58, 8-66
xvt_res_get_font, 15-10, 15-11, 15-25, 19-46
xvt_res_get_image, 19-45
xvt_res_get_menu

converting an XRC menu definition, 9-6
example, 9-9

xvt_res_get_str, 19-16, 19-35
xvt_res_get_str_list, B-3
I-33

XVT_OS_*, 2-10
xvt_palet_add_colors, 12-13
xvt_palet_add_colors_from_image, 12-13
xvt_palet_create, 12-13, 20-3
xvt_palet_destroy, 12-13
xvt_palet_get_tolerance, 12-14
xvt_palet_set_tolerance, 12-13
XVT_PALETTE, 12-12
XVT_PALETTE_* values, 12-12
XVT_PALETTE_TYPE type, 12-12
xvt_perr.h file, 21-6, 21-7
xvt_pict_create, 11-18, 16-2, 16-4
xvt_pict_destroy, 11-17
xvt_pict_lock, 11-18
xvt_pict_unlock, 11-18
XVT_PIXMAP, 12-8
XVT_PIXMAP_DEFAULT, 12-9
xvt_plat.h file, 2-8
xvt_pmap_create, 12-9

xvt_res_get_win_data, internationalization,
19-46–19-47

xvt_res_get_win_def
control colors, 8-58
control fonts, 8-56
example, 3-10
getting a control mnemonic, 8-66
initializing after an E_CREATE event, 3-12
structure-based GUI objects, 3-7

xvt_sbar_get_*, 6-25
xvt_sbar_get_pos, 6-25
xvt_sbar_get_proportion, 6-25
xvt_sbar_get_range, 6-25
xvt_sbar_set_*, 6-25
xvt_sbar_set_pos, 4-39, 6-21, 6-25, 13-6
xvt_sbar_set_proportion, 6-21, 6-25, 13-6
xvt_sbar_set_range, 4-39, 6-21, 6-25, 8-20, 13-6
xvt_scr_beep, 8-18
xvt_scr_get_focus_topwin, 3-19, 6-22, 6-24

XVT Portability Toolkit Guide

I-34

xvt_scr_get_focus_vobj, 4-18, 6-24, 7-7
xvt_scr_hide_cursor, 14-2, 14-4
xvt_scr_launch_browser, 8-37
xvt_scr_list_windows, B-3
xvt_scr_list_wins, 6-16, 6-22
xvt_scr_set_busy_cursor, 14-2
xvt_scr_set_focus_vobj, 3-18, 4-10, 4-29, 6-24,

7-7, 8-16
xvt_slist_*, 8-16
xvt_slist_add_at_elt, B-1
xvt_slist_add_at_pos, B-2
xvt_slist_add_sorted, 19-22, B-2
xvt_slist_count, B-2
xvt_slist_create, B-1
xvt_slist_debug, B-2
xvt_slist_destroy, B-1, B-3
xvt_slist_get, B-2
xvt_slist_get_data, B-2
xvt_slist_get_elt, B-2
xvt_slist_get_first, B-2
xvt_slist_get_next, B-2
xvt_slist_is_valid, B-2
xvt_slist_rem, B-2
xvt_str_collate, 19-22, 19-26, 19-39
xvt_str_collate_ignoring_case, 19-22, 19-26,

19-40
xvt_str_compare, 19-26, 19-39
xvt_str_compare_ignoring_case, 19-26, 19-39
xvt_s
xvt_s
xvt_s
xvt_s
xvt_s

xvt_s
xvt_s
xvt_s

19-41
multibyte-aware applications, 4-17, 19-29
replacement ANSI string functions, 19-40

xvt_str_convert_wchar_to_lower, 19-26, 19-40
xvt_str_convert_wchar_to_upper, 19-26, 19-40
xvt_str_convert_wcs_to_mbs

character set conversions, 19-26
internationalization example, 19-25
manipulating multibyte character strings,

19-41
replacement ANSI string functions, 19-40

xvt_str_copy, 19-26, 19-39
xvt_str_copy_n_char, 19-27, 19-39
xvt_str_copy_n_size, 19-27, 19-39
xvt_str_duplicate, 19-27, 19-40
xvt_str_find_char_set, 19-27, 19-39, 19-40
xvt_str_find_eol, 16-2, 19-16, 19-27, 19-40
xvt_str_find_first_char, 19-27, 19-39
xvt_str_find_last_char, 19-27, 19-39
xvt_str_find_not_char_set, 19-27, 19-40
xvt_str_find_substring

localization example, 19-56
replacement ANSI string functions, 19-40
string processing, 19-27

xvt_str_find_token, 19-27, 19-40
xvt_str_get_byte_count

buffer sizes, 19-42
internationalization example, 19-43
tr_compare_n_char, 19-26, 19-39
tr_concat, 19-26, 19-39
tr_concat_n_char, 19-26, 19-39
tr_convert_mb_to_wc, 19-25, 19-39, 19-41
tr_convert_mbs_to_wcs
definition, 19-25
internationalization example, 19-42
replacement ANSI string functions, 19-39
wide characters, 19-41
tr_convert_to_lower, 19-26, 19-40
tr_convert_to_upper, 19-25–19-26, 19-40
tr_convert_wc_to_mb
character set conversions, 19-25
example, 4-21
handling character events, 19-44
internationalization example, 19-45
manipulating multibyte character strings,

replacement ANSI string functions, 19-39
string processing, 19-27

xvt_str_get_char_count
buffer sizes, 19-42
internationalization example, 19-43
replacement ANSI string functions, 19-39
string processing, 19-27

xvt_str_get_char_size
buffer sizes, 19-42
definition, 19-27
internationalization example, 19-41
replacement ANSI string functions, 19-39

xvt_str_get_n_char_count
buffer sizes, 19-42
internationalization, 19-40
string processing, 19-27

xvt_str_get_n_char_size, 19-27, 19-40, 19-42

Index

xvt_str_get_next_char, 19-27, 19-40, 19-41
xvt_str_get_prev_char, 19-27, 19-40, 19-41
xvt_str_is_alnum, 19-27, 19-39
xvt_str_is_alpha, 19-28, 19-39
xvt_str_is_digit, 19-28, 19-39
xvt_str_is_equal, 19-28, 19-40
xvt_str_is_invariant, 19-28, 19-40
xvt_str_is_lower, 19-28, 19-39
xvt_str_is_space, 19-28, 19-39
xvt_str_is_upper, 19-28, 19-39
xvt_str_is_xdigit, 19-28, 19-39
xvt_str_match, 19-28, 19-40
xvt_str_parse_double, 19-28, 19-39, 19-40
xvt_str_parse_long, 19-28, 19-39, 19-40
xvt_str_parse_ulong

internationalization example, 19-46, 19-47
replacement ANSI string functions, 19-40
wide character processing, 19-28

xvt_str_sprintf
formatting locale-specifics strings, 19-43
internationalization example, 19-44
replacement ANSI string functions, 19-39
wide character processing, 19-29

xvt_str_vsprintf, 19-29, 19-40, 19-43
xvt_timer_create, 4-61
xvt_timer_destroy, 4-61

xvt_treeview_get_parent_node, 8-54
xvt_treeview_get_root_node, 8-54
XVT_TREEVIEW_NODE, 8-52
xvt_treeview_node_selected, 8-55
XVT_TREEVIEW_NODE_TYPE, 8-52
XVT_TREEVIEW_NODEtypes, 8-52
xvt_treeview_remove_child_node, 8-55
xvt_treeview_resume, 8-55
xvt_treeview_set_attributes, 8-55
xvt_treeview_set_line_height, 8-55
xvt_treeview_set_node_callback, 8-55
xvt_treeview_set_node_data, 8-55
xvt_treeview_set_node_image_collapsed, 8-55
xvt_treeview_set_node_image_expanded, 8-55
xvt_treeview_set_node_image_item, 8-55
xvt_treeview_set_node_string, 8-55
xvt_treeview_set_node_type, 8-55
xvt_treeview_suspend, 8-55
xvt_treeview_update, 8-55
xvt_tx_add_par, 8-49, 8-50
xvt_tx_append, 8-49, 8-50
xvt_tx_clear, 8-51
xvt_tx_create, 8-45
xvt_tx_create_def, 8-45
xvt_tx_destroy, 8-51
xvt_tx_get_*, 8-49
I-35

XVT_TPC_*, 22-20
xvt_treeview_add_child_node, 8-53
xvt_treeview_collapse_node, 8-53
xvt_treeview_create, 8-53
xvt_treeview_create_node, 8-53
xvt_treeview_destroy_node, 8-53
xvt_treeview_expand_node, 8-54
xvt_treeview_get_attributes, 8-54
xvt_treeview_get_child_node, 8-54
xvt_treeview_get_line_height, 8-54
xvt_treeview_get_node_callback, 8-54
xvt_treeview_get_node_data, 8-54
xvt_treeview_get_node_image_collapsed, 8-54
xvt_treeview_get_node_image_expanded, 8-54
xvt_treeview_get_node_image_item, 8-54
xvt_treeview_get_node_num_children, 8-54
xvt_treeview_get_node_num_vis_children, 8-54
xvt_treeview_get_node_string, 8-54
xvt_treeview_get_node_type, 8-54

xvt_tx_get_attr, 3-21
xvt_tx_get_line, 8-50, 19-16
xvt_tx_get_next_tx, 8-47
xvt_tx_get_num_*, 8-49
xvt_tx_get_num_chars, 19-16
xvt_tx_get_origin, 8-51
xvt_tx_get_sel, 8-50, 19-16
xvt_tx_process_event, 4-18
xvt_tx_rem_par, 8-49
xvt_tx_reset, 8-48
xvt_tx_resume, 8-49
xvt_tx_scroll_hor, 8-51
xvt_tx_scroll_vert, 8-51
xvt_tx_set_par, 8-49–8-50
xvt_tx_set_scroll_callback, 8-51
xvt_tx_set_sel, 8-50
xvt_tx_suspend, 8-49
xvt_type.h file, 20-3
XVT_UBYTE type, 19-24

XVT Portability Toolkit Guide

I-36

xvt_vobj_destroy
aborting a print job, 18-9
destroying a window, dialog, or control, 3-21
dialogs, effect on, 7-7
E_CLOSE events, 4-22
E_DESTROY events, 4-28
E_QUIT events, 4-56
icon attributes, 8-41
modal dialogs, 7-2
modal windows, 6-9
print windows, 18-3
recursive calls to event handlers, 4-10
using timers, 4-61
windows, effect on, 6-24

xvt_vobj_get_attr
display and system metrics, 10-7
retrieving font mapper, 15-23
retrieving number of timers available, 4-61
retrieving print information, 18-8
retrieving system attribute value, 2-6

xvt_vobj_get_client_rect
client rectangle for dialog, 7-7
client rectangle for window, 6-23
computing dimensions of a GUI object’s

client rectangle, 3-18, 6-11
event ordering considerations, 4-13

xvt_vobj_get_data
application data associated with pixmap, 12-9

xvt_v
xvt_v

xvt_v

xvt_v

xvt_v
xvt_v

xvt_vobj_move
child windows, 6-15
client area, 6-11
dialogs, effect on, 7-7
E_SIZE events, 4-59
initializing after an E_CREATE event, 3-12
modal windows, 6-10
move and/or resize a container, 3-20
moving, resizing, disabling, and hiding

objects, 3-20
recursive calls to event handlers, 4-10
windows, effect on, 6-23

xvt_vobj_raise, 3-19, 6-24
xvt_vobj_set_attr

customized error handler function, 4-16
selecting locale files at application startup,

19-56
setting system attribute to new value, 2-6
specifying font mapper, 15-23
specifying replacement hook functions, 4-15,

4-20, 19-30
xvt_vobj_set_data

allocating window or dialog-specific data
structures, 3-12, 4-27

associating application data with dialog, 7-7
associating application data with window,

6-18, 6-24
E_MOUSE_* events, 4-51
E_DESTROY events, 3-13, 4-28
event ordering considerations, 4-12
free container’s application data, 3-13
retrieving application data, 6-18, 6-24, 7-7
obj_get_flags, 3-20
obj_get_outer_rect

computing outer dimensions of a GUI object,
3-18, 6-11, 11-14

event ordering considerations, 4-13
outer dimensions of a dialog, 7-7
outer dimensions of a window, 6-23
obj_get_parent, 3-15, 3-18, 6-9, 6-16, 6-23,

7-7
obj_get_title, 3-19, 6-20, 6-23, 7-7, 8-25,

8-66, 19-16
obj_get_type, 4-18, 6-8, 6-22, 6-24, 7-7
obj_is_focusable, 3-18

xvt_vobj_set_enabled, 3-20, 6-23, 7-7
xvt_vobj_set_palet, 12-13
xvt_vobj_set_title, 3-12, 3-19, 6-20, 6-23, 7-7,

8-27, 8-65
xvt_vobj_set_visible, 3-20, 6-10, 6-23, 7-7
xvt_vobj_translate_points, 10-3
XVT_WCHAR type

casting to char, 4-17, 19-30
E_CHAR event field, 19-29
handling character events, 19-44
internationalization example, 19-25, 19-42
multibyte-aware applications, 4-17
wide characters and strings, 19-23, 19-41

xvt_win_create, 6-11, 9-4
xvt_win_create_def

converting XRC menu definitions, 9-6
creating icon controls, 8-39

Index

creating text objects, 8-45
defining menus, 9-5
initializing and terminating dialogs and

windows, 3-12
setting control mnemonics, 8-65
structure-based objects, 3-7–3-11

xvt_win_create_res, 8-3, 8-45, 9-4
xvt_win_dispatch_event, 4-8, 4-25, 4-66
xvt_win_enum_wins, 6-16, 6-17
xvt_win_get_ctl, 3-13, 3-21, 8-10
xvt_win_get_ctl_colors, 8-64
xvt_win_get_ctl_font, 8-57
xvt_win_get_cursor, 14-1
xvt_win_get_event_mask, 4-14
xvt_win_get_handler, 6-13, 6-24, 7-7
xvt_win_get_nav, 6-14
xvt_win_get_tx, 8-46
xvt_win_list_wins, 6-16
xvt_win_release_pointer, 4-47, 4-49, 14-2, 15-36
xvt_win_set_caret_pos, 14-4
xvt_win_set_caret_size, 14-4
xvt_win_set_caret_visible, 15-36
xvt_win_set_colors, 8-48
xvt_win_set_ctl_colors, 8-64
xvt_win_set_ctl_font, 8-57
xvt_win_set_cursor, 14-1

mnemonic characters, 8-66, 9-7
modifier keys, 4-19
native font descriptor, 15-15
pictures, 11-18, 12-15
pop-up menus, 9-9
resource file binding, 19-32
screen window, 10-2
setting color of selected text, 8-61–8-62
setting file creator, 17-5, 17-8
setting locale files, example, 19-57
supported codesets, A-8
task window, 10-2
use of Option key, 4-19
XVT_CALLCONV1, 2-7

XVT/Win32
code page, 19-10
color, background and foreground, 8-60
control colors, 8-58
control component colors, 8-60–8-63
default font behavior, 15-29
E_CHAR events, 4-17
E_QUIT events, 4-56
Font Selection dialogs, 15-6
German default help topics, 19-53
help source format, 22-23
help viewer resource file, 19-54
I-37

xvt_win_set_doc_title, 3-19, 6-20
xvt_win_set_event_mask, 4-14–4-15
xvt_win_set_font, 4-32
xvt_win_set_handler, 6-13, 6-24, 7-7
xvt_win_trap_pointer, 4-47, 4-49, 4-51, 4-54, 14-2
XVT.elm, 2-xxvii, 2-xxviii
xvt.h file, 2-8, 4-24
XVT/Mac

control component colors, 8-60–8-63
control mnemonics, 8-65
default font behavior, 15-29
E_CHAR events, 4-17
E_QUIT events, 4-56
Font/Style menus, 15-6, 15-33
foreground and background colors, 8-61–

8-62
help viewer resource file, 19-54
interpretation of Shift key, 4-18
localization, 19-15, 19-20

keyboard navigation, 6-14
list of all windows, 6-22
localization, 19-15, 19-19
modifier keys, 4-19
multibyte encoding scheme, 19-11
native font descriptor, 15-15
operating system symbol, 2-11
pictures, 11-18
pop-up menus, 9-9
positioning of modal windows, 6-10
resource file binding, 19-33
screen window, 10-2
setting locale files, example, 19-57
supported codesets, A-8
supported platform, 2-xxiii
task window, 10-2
use of Control key, 4-19
window system symbol, 2-9

XVT/XM

XVT Portability Toolkit Guide

I-38

color table considerations, 12-12
control component colors, 8-60–8-63
control mnemonics, 8-65
controls, spacing, 5-9
default font behavior, 15-29
E_QUIT events, 4-56
Font/Style menus, 15-6, 15-33
foreground and background colors, 8-61
help viewer resource file, 19-54
localization, 19-15, 19-19
mnemonic characters, 8-66
modifier keys, 4-19
native font descriptor, 15-15
pop-up menus, 9-9
resource file binding, 19-32
sample font mappings, 15-28
screen window, 10-2
setting locale files, example, 19-57
supported codesets, A-6
supported platform, 2-xxiii
task window, 10-2
XVT_CALLCONV1, 2-7

XVT-Design
creating controls, 8-3
creating menus, 9-1
creating resources, 5-1, 5-4
creating windows, 6-1, 6-11
defining menubars, 9-4
E
e
h
h
i
l
m
o
r
r
r
r
s
t
t
X
X

xvtmenu.h file, 4-24
XVTWS, 2-9

Y
Yiddish, character codeset, A-8
_COMMAND events, 3-16
vent handlers, 3-13, 6-13, 6-14
elp menu, 22-13
elp topics, 22-15
nternationalization, 19-4, 19-7, 19-36
ocalization, 19-7

enu tags, 9-4, 9-6
nline help topics, 22-11
adio button groups, 8-10
esizing GUI objects, 5-8
esource-based objects, 3-4
esource-based windows, 6-12
witch for E_CONTROL, 3-15
ask window, 6-3, 6-13
ranslating strings, 19-49
RC file, generated, 5-13
RC_RECT macro, 5-8

	XVT Portability Toolkit Guide
	Copyrights
	Published By
	Revision History
	XVT Portability Toolkit Guide
	Chapter 1: Introduction to the XVT Portability Toolkit 1-1
	Chapter 2: About the XVT API 2-1
	Chapter 3: GUI Elements 3-1
	Chapter 4: Events 4-1
	Chapter 5: Resources and URL 5-1
	Chapter 6: Windows 6-1
	Chapter 7: Dialogs 7-1
	Chapter 8: Controls 8-1
	Chapter 9: Menus 9-1
	Chapter 10: Coordinate Systems 10-1
	Chapter 11: Drawing and Pictures 11-1
	Chapter 12: Portable Images 12-1
	Chapter 13: Scrolling 13-1
	Chapter 14: Cursors and Carets 14-1
	Chapter 15: Fonts and Text 15-1
	Chapter 16: Clipboard 16-1
	Chapter 17: Files 17-1
	Chapter 18: Printing 18-1
	Chapter 19: Multibyte Character Sets and Localization 19-1
	Chapter 20: Memory Allocation 20-1
	Chapter 21: Diagnostics and Debugging 21-1
	Chapter 22: Hypertext Online Help 22-1
	Guide

	Preface
	This Guide presents a basic yet thorough treatment of portable GUI programming with XVT’s Portability Toolkit. XVT offers a Development Solution for C (DSC) and a Development Solution for C++ (DSC++). The XVT Portability Toolkit is the portable API...
	This Guide, organized by subjects, complements the XVT Portability Toolkit Reference, which is an alphabetical listing of Application Programming Interface (API) elements. The Guide aims to get you programming as quickly as possible with XVT. On the ...
	How to Use the Guide
	To get the most out of this Guide, XVT recommends the following approach:
	If you are an XVT-Design user, work through the Tutorial chapter of the XVT-Design Manual. The XVT-Design Manual introduces you to using XVT-Design in conjunction with the XVT Portability Toolkit. The tutorial gives you an experiential appreciation f...

	Other XVT Documentation
	About This Manual
	Conventions Used in This Manual
	General Conventions
	Tip: This marks the beginning of a procedure having one or more steps. Tips can help you quickly locate “how-to” information.
	This symbol and typestyle highlight information specific to using XVT-Design, XVT’s visual programming tool and code generator.
	Code Conventions

	XVT Customer Support
	When you buy an XVT product or an XVT maintenance agreement, you gain access to some of the most advanced application development assistance in the industry.
	If you have problems or questions while using XVT products, you can talk to an XVT Customer Support Engineer. XVT Customer Support helps you make more effective use of XVT products, enabling you to get your application up and running as quickly as po...
	How Customer Support Works

	XVT’s Customer Support goal is to respond to all requests within twenty-four hours. As soon as we log your call into our system, you will receive a service request number.
	What XVT Customer Support Provides
	XVT Customer Support can serve you better if you understand what services are available.
	This is what XVT’s Customer Support can do:
	Keep in mind that XVT Customer Support cannot do the following:

	Customer Support Services
	XVT’s Customer Support engineers can answer questions that arise from the use of a native GUI platform, or the operating system itself (see the following subsections, “Standard Customer Support Services” and “Extended Support Services”). Wh...
	Standard Customer Support Services
	XVT Customer Support personnel are experienced software developers that specialize in the use of XVT products on supported MS-Win32, Motif, and Macintosh computer systems. For registered named users, XVT offers the following standard services:

	Extended Support Services
	XVT recognizes that customers sometimes need comprehensive assistance—the type of assistance and advice that has a broader scope than just the XVT products that the customers have purchased. The XVT Customer Support Extended Service Contract is a c...

	FTP Site
	Support for XVT Software Purchased from Distributors
	Information We Need to Help You
	When you contact XVT Customer Support, please supply the following information:

	Product Updates
	Providence Software actively updates XVT. For most minor releases, and for all major releases, Providence supplies additions to or complete replacements for XVT documentation. As a service to our customers, all product updates are made available from...
	www.xvt.com

	How to Contact Customer Support
	You can contact Software Customer Support for XVT in several different ways:

	XVT’s Consulting and Training Services
	Providence offers extensive fee-based services to help customers use XVT products. Experienced professionals can help you learn GUI programming, or help you prototype, design, code, debug, and maintain your XVT applications.
	In addition to consulting, Providence personnel also conduct on-site and public training classes in XVT and GUI programming techniques.

	XVT License Management
	You must have a valid license from Providence Software Solutions to use the XVT products. XVT products such as the curl resource compiler, XVT Design and XVT Architect will not operate.
	The XVT license can be either a node-locked license or a floating license. A node-locked license will permit you to use XVT on the individual computer you identify. A floating license will allow you to use a specified number of copies of your XVT pro...
	Node-locked licenses

	A node-locked license will give access to XVT on a particular computer, based on its unique computer identification. You first run a utility provided by Providence Software to determine your computer’s id. Providence uses that id to generate a lice...
	The license file that is provided to you is named XVT.elm and must be placed in the bin directory under the root or top-most directory of your XVT installation. An environment variable named XVT_DSC_DIR or XVT_DSP_DIR must be set to point to the root...
	Floating licenses

	Floating licenses are available on a local network. The number of users specified in your contract can connect to the license server when a license is needed.
	A system on your network is designated as the server and runs an application named LMNetServer. This application checks its own license file, LMNetServer.elm. This file specifies the number of simultaneous licenses that can be made available. The LMN...

	Table of Contents
	Preface
	Customer Support
	License Management
	1
	Introduction to the XVT Portability Toolkit
	XVT has implemented the XVT Portability Toolkit™ (PTK) as a thin layer on top of the native GUI Application Programming Interface (API). The PTK provides access to native functionality, without overloading your application’s performance or size. ...
	1.1. The Elements of an XVT Application
	1.1.1. Building Blocks
	An XVT-based application usually comprises the following components:

	1.1.2. GUI Objects
	A graphical user interface (GUI) has four main types of graphical objects: windows, dialogs, controls, and menus.

	1.1.3. Events and Event Handlers
	XVT bases its Portability Toolkit on a set of abstract, portable event representations. Abstract events deliver user and GUI system event data to GUI objects within your application.

	1.2. XVT’s Development Solutions
	Using either one of XVT’s Development Solutions, you can produce an extensive graphical application and only write a modest amount of new code.
	Figure 1.1. XVT Portability Toolkits — the foundation of a well- written, versatile, and maintainable application

	1.2.1. XVT Development Solution for C
	1.2.2. XVT Development Solution for C++
	XVT Development Solution for C++ (DSC++) contains a robust, object-oriented application framework designed specifically for portable C++ GUI development.

	1.3. Cross-platform GUI Development
	1.3.1. Extensible Programming with XVT
	As you develop your portable application, XVT lets you “extend” it beyond XVT’s Portability Toolkits to native GUI functionality. This is a practical and powerful aspect of XVT’s programming model, and something inherently available because o...
	1.3.1.1. System Attributes Feature
	XVT’s approach to GUI development includes a system attribute feature, supported by two general purpose functions. Given an attribute identifier, these functions either set a system attribute to a new value, or retrieve the current value of the att...

	1.3.1.2. Native Access Functions
	In addition to platform-specific system attributes, each platform has a documented set of access functions that allow you to take advantage of unique features found in all native GUI systems. These functions let you interface directly with the native...

	1.3.2. Cross-platform Development Process for C
	If you are programming with C, developing an XVT-based application involves following these general steps:
	1. Analyze the requirements of your target audience with regard to such things as performance, locale, communication, equipment, external databases, functionality, and so forth.
	2. Associate application behavior with GUI components, i.e., how (and when) objects behind the user interface communicate with one another.
	3. Build source code modules that implement the functions needed by individual GUI components.
	4. Build additional source modules for the non-GUI parts of the application.
	5. Generate text for the application’s help system.
	6. Choose bitmap images for the help system or other parts of the application to display.
	7. Write a makefile (whose template you select from the provided examples for the target compiler and platform).
	8. Using the text editor of your choice, write a resource file, remembering that when programming with XVT, virtually every aspect of the user interface can be specified using resources.
	9. Compile, link, and execute your application.
	Application Files

	XVT suggests you organize your C application in the following manner:
	Figure 1.2. Important steps of “C” cross-platform development

	1.3.3. Cross-platform Development Process for C++
	If you are programming with C++, developing an XVT-based application using the visual application builder, it involves following these general steps:
	1. Design and lay out your application using the visual application builder’s Blueprint, Drafting Board, and Strata modules, as well as its editors.
	2. Generate the Shell files, which include a C++ file and a header file for each application, document, and window class, as well as a startup file, a URL file, and a makefile.
	3. Generate the project’s object Factory — a set of C++, header, and resource files that represent what you designed interactively with the visual application builder.
	4. Generate a project file or makefile for your compiler, and add all necessary files.
	5. Run curl to compile XVT’s Universal Resource Language (URL) into a native resource file.
	6. Modify the generated Shell files to implement the functionality of your application.
	7. From the Shell files, interact with the Factory objects if you need to manipulate GUI objects at runtime.
	8. Compile, link, and execute your application.
	Application Files

	An XVT C++ application is organized in the following manner:
	Figure 1.3. Important steps of “C++” cross-platform development

	1.4. Getting the Most Out of the PTK
	This section introduces you to the XVT Portability Toolkit (PTK) and to some of the utilities you will use with it: XVT’s Universal Resource Language (URL), the curl resource compiler, and the helpc help text compiler.
	1.4.1. XVT Portability Toolkits
	The XVT Portability Toolkits are platform-specific C language libraries. As the foundation of XVT’s visual programming model, they offer a consistent programming interface for all popular windowing systems.

	1.4.2. XVT’s Universal Resource Language and Compiler
	Resources are specifications for menus, dialogs, windows, bitmap images, fonts, and strings—they are kept in a small, read-only database located outside your application’s runtime address space. Resources do such things as:
	When your application needs a resource, the application requests the resource by an ID number. XVT or the native window system brings the resource into memory so it can be accessed. This saves space at runtime and makes it possible to construct resou...

	1.4.3. XVT’s helpc Help Text Compiler
	XVT’s online help feature provides a powerful, flexible, hypertext- based system for your applications:

	1.4.4. Multibyte Character Set and Localization Support
	XVT includes support for application development for multiple locales and international languages. All XVT functions, including text edit object functions,handle multibyte strings. String processing API functions portably process multibyte strings.
	1.4.4.1. Externalized Resource Files
	All resources are separated from the executable code and can be selected at application startup time. This mainly affects the PC and Macintosh platforms, since the Motif platform has always provided separate resource files. Of course, running any loc...

	1.4.4.2. More Support for Internationalized Applications
	Furthermore, file and pathnames may contain multibyte characters. All PTK functions and data types that accept file or pathname strings are multibyte capable.

	2
	About the XVT API
	XVT’s Portability Toolkit provides an application programming interface (API) layered on top of and abstracted from native GUIs. The Portability Toolkit’s API forms the foundation of XVT’s portable technology.
	2.1. The XVT Normalized API Naming Convention
	To make your coding easier, XVT uses the following normalized naming convention for its API functions:

	2.2. Objects, Inheritance, and Polymorphism
	XVT organizes its normalized API (NAPI) around “objects.” An object is an abstraction of user interface components (such as windows) or supporting facilities (such as the file system). The API is a collection of functions that operate on these ob...
	2.2.1. Objects
	XVT has identified the following “objects” and functional groupings:

	2.2.2. Inheritance and Polymorphism
	Often the same operation can be performed on different objects. For example, you can set visibility on both windows and controls. Providing a separate call for the operation on each object would produce an unacceptably large API. Instead, XVT makes t...
	Figure 2.1. Object Inheritance within the XVT API

	2.3. Invoking XVT
	Like other C programs, an XVT application starts with main. This allows you to specify command line arguments. You can also perform initialization unrelated to the GUI portion of your application, such as opening data files or establishing a network ...
	Tip: To initialize the XVT library:
	This is the XVT_CONFIG structure and its fields:

	2.4. System Attributes
	XVT provides two functions for setting and retrieving system attributes. Given an attribute identifier, these functions either set a system attribute to a new value, or retrieve the current value of the attribute for the application:
	XVT supports two sets of attributes:
	Example: The following code shows how an XVT application program would retrieve the screen dimensions and replace the default fatal error handler with its own function:

	2.5. Function Calling Convention Macro
	The XVT Portability Toolkit contains one macro that defines function calling conventions: XVT_CALLCONV1. The macro’s effect differs according to platform:
	Example: You should declare a callback function prototype like this:
	You should declare the main function like this:

	2.6. Symbols for Conditional Compilation
	Portions of your source code can depend on the window system or file system used for compiling and running your application. For example, code specific to one window system could take advantage of a particular feature of that system.
	2.6.1. Window System Symbols
	Tip: To determine the window system on which you are compiling:
	Example: The following code tests for MS-Windows (Win32):

	2.6.2. File System Symbols
	The following symbols define whether or not a particular file system is supported:
	Example: The following code tests for UNIX-like filenames:

	2.6.3. Operating System Symbols
	Tip: To determine the operating system being used:
	2.6.3.1. Operating System Feature Symbols
	Tip: To check for specific operating system features:

	2.6.4. Compiler Symbols
	The symbol XVT_CC indicates the compiler being used.
	2.6.4.1. Compiler Feature Symbols
	The xvt_env.h file also defines a number of symbols that describe the features of the compiler in use.

	2.6.4.2. Compile Time Optimization of XVT Applications
	The XVT Portability Toolkit is implemented in two layers. The top API layer is called directly by the application. This layer performs error checking of all input parameters and sometimes other validation before calling the internal layer, which cont...

	3
	GUI Elements
	This chapter introduces the basic graphical elements of GUI applications: windows, dialogs, controls, and menus. It discusses common data structures and events for these GUI objects and suggests techniques for dealing with them.
	3.1. GUI Object Definitions
	3.2. Comparison of Dialogs and Windows
	Dialogs are really specialized windows, designed to handle a specific task: presenting controls to the application user for selection and manipulation. However, XVT lets you place controls in windows as well. You might do this if your application has...
	Table 3.1. Comparison of dialogs and windows

	3.3. Creating, Initializing, and Terminating GUI Objects
	This section describes how to create, initialize, and terminate several types of GUI objects: resource-based, structure-based, and dynamic.
	3.3.1. Resource-based GUI Objects
	You can specify the following GUI objects as resources: windows, dialogs, controls, and menus. To create a resource-based object, you specify the object’s definition in XVT’s Universal Resource Language (URL). The application then accesses it at ...
	You can create resource-based objects in XVT-Design. To each object, XVT-Design assigns a symbolic identifier, which corresponds to a resource ID. Functions can access the object by its symbolic identifier. XVT-Design places symbolic identifier defin...

	3.3.1.1. Windows, Dialogs, and Controls
	Resource-based windows and dialogs are useful when their definition is unknown or is changeable at compilation time.
	In URL, dialogs and windows are defined both in terms of their own attributes (i.e., resource ID, size, title, modality), and in terms of the individual controls that they contain. You can also define optional arbitrary data (USERDATA) for the window...
	Example: The following URL and C code creates a window using resources (WINDOW_1 is this window’s resource ID):
	Example: This URL code defines a modeless dialog with one push button control:
	Example: This URL code defines a modal dialog with one push button control:

	3.3.1.2. Menus
	Usually, both the URL file and the program refer to each item in a menu by means of constants.
	Example: The code below shows a hierarchical menu structure as it would be defined in the URL file:
	This example defines a menubar with two submenus, each containing additional items. You can see these features in the URL code:

	3.3.2. Structure-based GUI Objects
	Structure-based GUI objects are created using an array of WIN_DEF data structures that is passed to xvt_win_create_def (for windows), xvt_dlg_create_def (for dialogs), or xvt_ctl_create_def (for controls).
	WIN_DEF Data Structure

	You initialize the contents of the WIN_DEF in two ways:
	The following code shows the WIN_DEF structure:
	Example: This example creates a window using data from a WIN_DEF array initialized in application code:
	Window Attribute Flags

	XVT defines window attributes as flags that can be logically OR’d together. The resulting combination is passed to one of the window creation functions. The following table lists the window-attribute flags (several of which are platform-specific):
	Dialog and Control Flags

	To determine the initial state of a dialog, you specify two XVT flags in the flags field in the dlg substructure: DLG_FLAG_INVISIBLE, and DLG_FLAG_DISABLED. If you don’t specify either, the dialog is both visible and enabled at creation time.
	Example: An array of WIN_DEF objects is used to create a dialog with a single push button (the third element of the array is the terminating WIN_DEF structure, with the wtype attribute set to W_NONE):

	3.3.3. Dynamic Windows
	Dynamic windows do not require external resource definitions. Your program can create them at any time.
	Tip: To dynamically create windows:
	Example: The following code fragment dynamically creates a W_DOC window:

	3.3.4. Initializing and Terminating Dialogs and Windows
	3.3.4.1. Initializing After an E_CREATE
	In response to E_CREATE events, XVT performs all initialization operations for windows and dialogs in their event handler functions. Initialization operations include the following:

	3.3.4.2. Terminating After an E_DESTROY
	As mentioned earlier, a window or dialog’s event handler receives an E_DESTROY event when xvt_vobj_destroy is called. This is a good time to free the container’s application data (with xvt_vobj_get_data), and to perform any other cleanup activiti...

	3.4. Event Handler Functions
	All creation functions for windows and dialogs require as a parameter the name of an event handler function.
	XVT-Design automatically defines the event handler function and supplies its name to the container’s creation function. It also provides the switch statement template in the event handler and supplies default code statements within some of the even...

	3.4.1. Handling Window and Dialog Events
	The following table provides some information about the XVT events that are sent to your window’s or dialog’s event handler, and how to handle them:
	Table 3.2. Handling XVT events
	Event Masking

	XVT allows you to block (or “mask”) specific event types from reaching window or dialog event handlers. To create an event mask, OR together the desired events (e.g., EM_MOUSE_DOWN | EM_UPDATE). By default, all XVT events are selected (the EM_ALL...

	3.4.2. Event Handling for Controls
	When a control-related event is reported, the WINDOW passed to the event handler identifies the control’s parent window or dialog, and the win field in the CONTROL_INFO object is the WINDOW of the control itself. Similarly, the type field in the CO...
	XVT-Design automatically creates a switch statement within the E_CONTROL case of the window or dialog’s event handler. In this switch statement, it inserts a case for each control contained in the window or dialog. The following example shows this ...

	Example: This example shows the event handler for a dialog.

	3.4.3. Event Handling For Menus
	The following example shows the structure of a window’s event handler for E_COMMAND events. Such events are generated when a user selects a menu item. For each menu item a function designed to handle that case is called.
	XVT-Design inserts a call to a menu event handler function in the E_COMMAND event of the window (if the window is configured to have a menubar). The following example shows this structure.

	3.5. Functions Common to Multiple GUI Objects
	This section discusses some operations common to multiple GUI objects. Object-specific functions are discussed in the appropriate chapter (e.g., Chapter 6, Windows).
	3.5.1. Determining Parent Windows
	Tip: To determine the parent of any window:

	3.5.2. Window and Dialog Dimensions and Coordinates
	Tip: To find the dimensions of a GUI object’s client rectangle:
	Tip: To find the coordinates and dimensions of the entire GUI object:
	Tip: To translate coordinates from one container to another:

	3.5.3. Controlling Keyboard Focus
	Tip: To explicitly assign keyboard focus to a control, a window, or a dialog:
	Tip: To determine if a specific GUI object can be assigned keyboard focus:
	Tip: To find out which object receives keyboard events:
	Tip: To find out which top-level window or dialog is currently active:

	3.5.4. Controlling Window Stacking
	Tip: To control the stacking of windows:

	3.5.5. Setting and Getting Titles
	Windows, dialogs, and some controls have a title, which is set when they are created.
	Tip: To change titles at any time:
	Tip: To retrieve the title of a GUI object:

	3.5.6. Moving, Resizing, Disabling, and Hiding Objects
	Normally, only the application user moves and resizes windows or dialogs, but you can also do this programmatically. Your application receives an E_SIZE event when a container is resized, but not when it is merely moved.
	Tip: To move and/or resize a container:
	Tip: To hide an object without closing it:
	Tip: To toggle the enabled/disabled state of a child window:

	3.5.7. Determining Creation Flags, Handles, and IDs
	XVT allows the application to interact directly with any control. The functions described in this section allow you to ascertain the status of various XVT PTK GUI components.
	3.5.7.1. Obtaining the Creation Flag of a Visible Object
	Tip: To determine the current state of creation flags of a visible object (vobj):
	This function returns the following types of creation flags:

	3.5.7.2. Obtaining a Control’s Window Handle
	Tip: To convert any XVT control ID to a WINDOW:

	3.5.7.3. Obtaining a Control’s ID
	Tip: To obtain the ID of a given control (by passing its WINDOW handle):

	3.5.8. Destroying GUI Objects
	Tip: To destroy a window, dialog, or control:
	Tip: To destroy a pixmap:

	4
	Events
	XVT uses an event-driven programming paradigm. In other words, XVT applications respond to events whose order and timing is generally unpredictable. In this sense, no one part of an XVT application is “in control.” Instead, various event-handling...
	Figure 4.1. Control flow for XVT programs
	Native Events

	The underlying window system on which XVT runs can generate native GUI system events. XVT either ignores these or handles them without involving the application. Your application can be notified when these events occur; however, both the events thems...
	4.1. Types of Events
	This section discusses the types of events that XVT can send to event handlers, along with the information that accompanies them. All XVT events fall into one of three categories:
	User Interaction Events
	Window Management Events
	Other Events

	The following table summarizes all XVT events, explaining their significance for each of the three types of event handlers.
	Table 4.1. XVT events summary

	4.2. The EVENT Data Structure
	XVT uses a common structure for EVENTs to tell an application what event occurred and, in most cases, to supply additional information about the event. This structure contains the member type, followed by a union v, which contains additional members ...
	EVENT_TYPE Definition

	EVENT_TYPE has the following definition:

	4.3. Event Handlers
	When an event occurs, XVT notifies an application by invoking the application-defined event handler function for the appropriate window or dialog. XVT passes two arguments to the event handler:
	Example: Here is a sample event handler structure:
	4.3.1. Sending Events
	Tip: To send XVT events directly to window or dialog event handlers:

	4.3.2. Recursive Calls to Event Handlers
	An XVT event can occur whenever your application passes control to XVT, either by calling an XVT function or returning from an event handler. When window management events (for example, E_UPDATE or E_FOCUS) occur, an event handler might be called eve...

	4.3.3. E_UPDATE Restrictions
	When called during the processing of an E_UPDATE event, several XVT functions can cause unwanted recursive behavior within the event handler. This is usually due to side effects that these functions cause within the context of an E_UPDATE event. For ...
	Function Calls Illegal During E_UPDATE Event Processing

	Under normal circumstances, you cannot make the following function calls during E_UPDATE event processing. If you call these functions during an E_UPDATE, XVT issues an error.

	4.4. Managing Events
	This section discusses some techniques for managing events. To manage events in your application, you can:
	4.4.1. Event Ordering Rules
	XVT enforces certain rules regarding the ordering of events. If you make no assumptions about event ordering other than those in the rules below, your applications will be less error-prone, and will port more quickly.
	Event Ordering Rules
	1. The first event that a window receives is an E_CREATE, and the last event is an E_DESTROY. XVT guarantees this pair of events for each window.
	2. During the processing of an E_CREATE, any XVT window operation for that window is valid. If the window was created initially visible, then the window will be visible at the time of the E_CREATE. (This also holds true for dialogs.)
	3. During the processing of an E_DESTROY, you can’t call any XVT functions that refer to the WINDOW being destroyed, except xvt_vobj_get_data.
	4. The minimum sequence of events that an application receives for a new window or dialog is E_CREATE, E_SIZE, E_DESTROY. On some platforms, performing certain operations during a window’s E_CREATE (such as creating a dialog) can cause an E_SIZE ev...
	5. Applications are guaranteed to receive an E_FOCUS (FALSE) (or an E_DESTROY), for every E_FOCUS (TRUE).
	6. E_CHAR events are only received between E_FOCUS (TRUE) and E_FOCUS (FALSE) events.
	7. A mouse double-click is represented like this: E_MOUSE_DOWN, E_MOUSE_UP, E_MOUSE_DBL, E_MOUSE_UP. Under some conditions, the final E_MOUSE_UP may not be delivered if the mouse has moved outside the window before being released.
	8. When window resizing operations cause an E_UPDATE, the E_SIZE is always sent to the application before the E_UPDATE.
	9. The TASK_WIN has identical event semantics to other windows, with the E_QUIT event added. E_QUIT can be received any time after the E_SIZE event is received.
	10. Dialog event handlers do not receive the following events: E_COMMAND, E_FONT, E_MOUSE_*, E_QUIT, E_*SCROLL, and E_UPDATE.
	11. Dialog event handlers can receive the following events: E_CHAR, E_CONTROL, E_CLOSE, E_CREATE, E_DESTROY, E_FOCUS, E_HELP, E_SIZE, E_TIMER, and E_USER.

	4.4.2. Event Masking
	XVT allows you to block (or “mask”) certain event types from reaching window or dialog event handlers. At a minimum, XVT ensures that these event types do not reach the event handler. For some types, on some platforms, XVT masks at the level of t...
	The following two XVT functions support event masking:
	Additionally, XVT provides the following set of constants to represent masks for each XVT event type:
	Example: If you wanted to mask all E_MOUSE_MOVE and E_CHAR events from a window’s event handler, you would call xvt_win_set_event_mask like this:

	4.4.3. Defining Event and Keyboard Hooks
	XVT provides functions for accessing native GUI system events (including keystrokes) before they are processed by XVT. These “hook” functions let you examine, modify, reroute, or even discard such events. Each function is platform-dependent, beca...
	Tip: To specify replacement hook functions to XVT:
	Example: The calls to xvt_vobj_set_attr look like this:

	4.4.4. Application Errors
	Normally, applications clean up in response to the E_DESTROY event sent to the task window. However, abnormal exits might not generate this event.

	4.5. Descriptions of XVT Events
	The sections that follow (organized alphabetically) describe each event type. Only the part of the EVENT_TYPE union that applies to the event under discussion is shown.
	4.5.1. E_CHAR Events and Virtual Key Codes
	Partial Event Structure
	Processing Characters
	The EVENT substructure chr contains the character code member (ch) which is an XVT_WCHAR. XVT_WCHAR is an encapsulation of the ANSI wchar_t type, although this implementation may vary depending on the support supplied by native ANSI C libraries. Appl...
	Text Edit Object Events
	Shift and Control Characters
	Modifier Keys

	In addition to the shift and control fields, the modifiers field is a general way for detecting a pressed modifier key (Control key, Option key, Alt key, etc.). This field holds bit-wise flags to indicate one or more modifier keys selected. All avail...
	Virtual Keys

	XVT virtual key values are the K_* values (F1, Home key, etc.) defined in the xvt_defs.h header file. Virtual keys in character events may be detected in several ways.
	Key Hook Attribute

	You can change the mapping of raw key codes (as generated by the keyboard) to XVT virtual key codes, or add new codes, by changing the default key hook function. This is done with the function xvt_vobj_set_attr and the attribute ATTR_KEY_HOOK.
	Example: The following code processes characters delivered in E_CHAR events:

	4.5.2. E_CLOSE Events
	Partial Event Structure
	E_CLOSE Example
	In the following code, the application provides the function OK_to_close elsewhere:

	4.5.3. E_COMMAND Events
	Partial Event Structure
	E_COMMAND Example
	The following code handles command events in a window event handler. The macros M_FILE_CLOSE and M_FILE_QUIT are defined in xvtmenu.h, which is included by xvt.h.

	4.5.4. E_CONTROL Events
	Partial Event Structure
	What to Do with an E_CONTROL Event
	What should your application do upon receiving an E_CONTROL event? The following design approach works well.
	Tip: To handle an E_CONTROL event:
	1. Branch on the control ID.
	2. Infer the control type based on your ID numbering scheme. This lets you determine which substructure in the union within the CONTROL_INFO structure is appropriate for the event, and for the control.
	3. Check the contents of the control-specific substructure.
	4. Based on that control’s properties and behavior, perform operations that reflect your application’s needs for that event.

	4.5.5. E_CREATE Events
	Partial Event Structure

	4.5.6. E_DESTROY Events
	Partial Event Structure
	Responding to E_DESTROY Events
	In response to E_DESTROY events, applications will usually perform some or all of the following operations (although you aren’t limited to these):

	4.5.7. E_FOCUS Events
	Partial Event Structure
	Responding to Focus Changes
	Windows and dialogs often respond to focus changes in the following ways:
	Focus Deactivate Events

	On a focus deactivate event, don’t worry about the menubar or the clipboard but, if text or graphics were selected, consider showing them as unselected. Many applications will not have to do anything in response to E_FOCUS events.
	Focus Example

	The following code fragments illustrate how to enable and disable items on the Edit menu when a window gains the focus:

	4.5.8. E_FONT Events
	Partial Event Structure
	Responding to E_FONT Events
	When your application receives an E_FONT event, it must determine whether to apply the user’s Font/Style menu or Font Selection dialog selection. If so, it must do two things:
	E_FONT Example: Displaying Text Objects

	The following code displays four text objects, represented by this array of structures:
	E_FONT Example: Menus and Dialogs

	The Font/Style menu and Font Selection dialog are set to correspond to the currently selected object, or to have no check marks (in the menu) if no object is selected. This serves two purposes:
	E_FONT Example: Handling the E_FONT

	When an E_FONT event occurs, the font_id passed in the EVENT structure reflects the new logical font for the currently selected object, since the menus were previously set up to reflect that object’s logical font. Here is the code that handles E_FO...

	4.5.9. E_HELP Events
	Partial Event Structure
	If the user requests help for a window, dialog, or control:
	If the user requests help for a menu item:
	If the user requests help for a specific topic (rather than for a specific GUI object):

	4.5.10. E_HSCROLL and E_VSCROLL Events
	Partial Event Structure
	Figure 4.2. Parts of a scrollbar

	Tip: To scroll the contents of the window:
	Tip: To show the thumb in a new position:
	Scrolling Example

	The following code reads a file into memory, and lets the user scroll both horizontally and vertically through the text.
	When an E_HSCROLL or E_VSCROLL event occurs, the function do_scroll is called:
	Features of the do_scroll Function

	The following are several important things to note in do_scroll:

	4.5.11. E_MOUSE_DBL Events
	Partial Event Structure
	Double-click Definition
	A double-click is defined as a button-down action that rapidly follows a button-up action. Each platform defines “rapidly” according to its own tolerances. XVT reports the button-up action separately as an E_MOUSE_UP event. A second E_MOUSE_UP fo...
	Hence, four events result (in this order) from a double-click:
	E_MOUSE_DBL Example

	In this example, when the user double-clicks within an object’s bounding rectangle, the application makes sure that object is selected (whether it already is or not) and then opens a dialog box that shows its point size:

	4.5.12. E_MOUSE_DOWN Events
	Partial Event Structure
	Tip: To guarantee that you get an E_MOUSE_UP, even if it occurs outside the window in which the E_MOUSE_DOWN occurred:
	E_MOUSE_DOWN Example

	In the following code fragment, the object in which the E_MOUSE_DOWN occurred is noted (in the variable down_obj), but nothing is done unless an E_MOUSE_UP occurs in the same object.

	4.5.13. E_MOUSE_MOVE Events
	Partial Event Structure
	Dragging
	XVT generates E_MOUSE_MOVE events whether the mouse button is down or not. Most applications take action on mouse movements only when the button is down (that is, only when E_MOUSE_MOVE events occur between E_MOUSE_DOWN and E_MOUSE_UP events). This i...
	Tip: To ensure that your application gets the E_MOUSE_UP event:
	E_MOUSE_MOVE Example

	The following code fragments demonstrate what happens during mouse move events:
	Specifying the Size of the Rectangle
	Transforming the Rectangle

	The function normalize_rect (shown below) transforms a rectangle to ensure that its top is not greater than its bottom, and its left is not greater than its right. This is necessary because the user can move the mouse in any direction after pressing ...
	Drawing the Rubberband Rectangle

	4.5.14. E_MOUSE_SCROLL Events
	Partial Event Structure

	4.5.15. E_MOUSE_UP Events
	Partial Event Structure
	Example: See the examples in sections 4.5.11, 4.5.12, and 4.5.13.

	4.5.16. E_QUIT Events
	Partial Event Structure
	Types of E_QUIT Events
	The following are the two types of E_QUIT events:
	E_QUIT Example

	In the following code fragments, when a query-only E_QUIT event occurs, or when the user chooses Quit (or Exit) from the File menu, the function quit_approved is called to determine if quitting is okay. If it is, then the XVT function xvt_app_allow_q...

	4.5.17. E_SIZE Events
	Partial Event Structure
	The event handler for a window, dialog, or task window receives an E_SIZE event for any of the following reasons:
	Responding to E_SIZE Events

	When your application gets an E_SIZE event, you don’t have to redraw anything; XVT generates a separate E_UPDATE if necessary. However, you should adjust anything dependent on the size of the client area upon receipt of an E_SIZE event, such as the...
	E_SIZE Example

	In the following code fragments, the scrollbar proportions are adjusted when the window is resized.

	4.5.18. E_TIMER Events
	Partial Event Structure
	Using Timers
	Tip: To set a timer with a millisecond interval as an argument:
	Tip: To turn off a timer:
	E_TIMER Example

	The following code sets a timer when a window is created. E_TIMER events are then received sometime after the passage of 1000 milliseconds, and cause a status bar to be updated. Additional E_TIMER events continue to be generated at 1000-millisecond i...

	4.5.19. E_UPDATE Events
	Partial Event Structure
	Drawing and E_UPDATE Events
	In response to an E_UPDATE event, you should at least draw the part that needs updating. If you draw more than that, XVT may, for efficiency, temporarily reduce the clipping area so that only the part that needs updating can actually be drawn.
	Inducing E_UPDATEs

	Don’t induce an E_UPDATE event when it’s important to draw right away, to keep up with the user or to show animation. For example, when the user selects an object with the mouse, immediately draw whatever is required to show the selection; waitin...
	Updating Rectangles

	When you are calling xvt_dwin_invalidate_rect several times to invalidate disjoint areas of the window, it may be advantageous to call xvt_app_process_pending_events between calls to xvt_dwin_invalidate_rect. This allows each update rectangle to be h...
	E_UPDATE Example

	Example: In the following code fragments, the function do_update is called when an E_UPDATE event is received:

	4.5.20. E_USER Events
	Partial Event Structure

	5
	Resources and URL
	This chapter explains how to use XVT’s Universal Resource Language (URL) to specify resources for menus, dialogs, windows, and strings. You can then use the curl compiler to translate your URL specification into a resource script or binary file tha...
	You can create URL resources in XVT-Design without having to write URL code. XVT-Design can generate controls, menus, windows, dialogs and other resource objects, along with their URL file. If you use XVT-Design, you won’t need most of the informat...

	5.1. Resources
	Resources are specifications for menus, dialogs, windows, controls, strings, bitmap images, and fonts that are kept in a small, read-only database located outside your application’s runtime address space. When your application needs a resource, the...
	Example: For example, consider this XVT call. It accesses a dialog resource by ID:
	5.1.1. Predefined Resources
	5.1.2. Other System-Specific Resources
	5.1.3. Binary Resources
	The resources that are accessed at runtime are called binary resources. They may be located in a separate file from the executable application, they may be bound into the executable file, or they may be in a special part of the file (on the Mac, the ...

	5.2. Portable Resource Concepts
	5.2.1. Creating Portable Resources with URL
	Each platform has its own native resource language for describing resources in a text file. XVT provides a Universal Resource Language (URL) that lets you write resources for menus, dialogs, windows, strings, images, and fonts. XVT’s URL compiler (...
	Figure 5.1. Building resources with curl
	XVT-Design was developed to simplify the creation of resources. It allows you to directly generate controls, menus, windows, dialogs and the other resource objects as they will appear on the user’s screen. When you are satisfied with their placemen...

	5.2.2. General Rules for Coding Resources
	This section lists the rules that you must follow when coding resources for XVT applications, whether in URL or in a native resource language:
	XVT-Design automatically follows all resource-coding rules.

	5.2.3. Resources for Internationalized Applications
	When writing an international XVT application, resources become an integral aspect of the application design and your software development process. For example, when running curl, you will need to make sure that the correct header files for your loca...

	5.2.4. XVT Coordinate Units for Resources
	In URL, and also in WIN_DEF arrays, XVT coordinate units describe the position and dimensions of windows, dialogs, and controls. XVT defines three types of coordinate units:
	5.2.4.1. Pixels
	Example: If you specify a push button to be 24 pixels high, then the push button will be 24 pixels high, regardless of the platform or system font. If the system font happens to be 16 pixels high, then 24 is a good value for a push button. However, i...

	5.2.4.2. Chars and Semichars
	By using chars or semichars (UNIT_TYPE of U_CHARS or U_SEMICHARS), you can specify “device-independent” sizes for objects. XVT defines semichars and chars relative to the size of the system font on any given platform:
	Example: If you specify a push button to be 12 semichars high (i.e., 1 1/2 times the height of the system font), then on the platform with the 16-pixel system font, the push button will be 24 pixels high, and on the platform with the 26-pixel system ...

	5.2.4.3. Scaling Controls and Dialogs

	5.2.5. Formatting GUI Objects for Different Platforms
	XVT-Design generates macros for “tweaking” the size and spacing of dialogs, windows, and controls. The URL files that XVT-Design creates define all dialogs, windows, and controls in terms of the URL_RECT macro. This section discusses this macro a...
	The URL_RECT macro changes the size and spacing of rectangles created in URL files. XVT defines the URL_RECT macro in terms of the macros URL_DEST_WIDTH, URL_DEST_HEIGHT, URL_SRC_WIDTH, and URL_SRC_HEIGHT, as follows:
	5.2.5.1. Overriding the Macros
	XVT-Design always gives usable default values to the URL_SRC_* and URL_DEST_* macros. However, if you want to override these macros to resize your XVT-Design generated application, you can reset them before the URL_RECT macro definition, at the top o...
	Example: On XVT/XM, placing the following lines at the start of your URL file before URL_RECT is defined causes controls to appear larger and more widely spaced:

	5.3. URL Language Specification
	The URL language adheres to these guidelines:

	5.4. Writing URL Scripts
	The best way to begin writing an URL script is to study this chapter along with any XVT-provided examples, each of which has an associated URL file.

	5.5. Compiling URL
	5.6. Sample URL Script
	The following file was generated by XVT-Design. This is fontmap.url, from the Font Mapper (samples/design/fontmap) example in the sample area:

	6
	Windows
	XVT-Design produces source code and resources that create, size and locate windows. It also produces the event handling mechanism for the window and all its controls. This chapter contains background information about windows. If you create windows w...
	Windows are the basic building blocks in XVT programs. They provide an application “work area” for the user, presenting information and allowing the user to interact with that information. Windows are containers for graphics, font-based text, and...
	Figure 6.1. Window relationships on different platforms. XVT/XM has a floating task window the size of the menubar (not shown here).

	6.1. Screen and Task Windows
	On start-up, an XVT application creates two windows: a screen window and a task window.
	6.1.1. Screen Window
	The screen window represents the physical display screen. Its boundaries and dimensions reflect the pixel extent of the physical screen. It receives no events.

	6.1.2. Task Window
	The task window is a virtual window with its own event handler. It represents the application, process, or logical task. On some platforms, it is represented by a distinct visible object with its own window coordinates. On other platforms, its repres...
	XVT-Design creates the task window for you. XVT-Design refers to it as the “Application” module. Design places source code for the task window and its event handler in a file which, by default, has the same name as the project.
	Table 6.1. Characteristics of the task window on each supported XVT platform

	6.2. Top-level, Child, and Modal Windows
	6.2.1. Top-level Windows
	Top-level windows—also called regular or document windows— contain the application’s controls and graphics (see Figure 6.2 and Figure 6.3). The application creates them as needed. Top-level windows are independent of one another.
	Figure 6.2. Top-level window on MS-Windows
	Figure 6.3. Top-level window on Motif

	6.2.2. Child Windows
	6.2.3. Modal Windows
	The purpose of a modal window is to block the users’ interaction with any other application window except the modal window itself. Modal windows have a different look-and-feel on each platform, because they conform with the required style of that p...

	6.3. XVT WINDOWs and Window Types
	To refer to a specific XVT window, you’ll use a descriptor of type WINDOW:
	6.3.1. NULL_WIN Symbol
	When you have to assign or compare an object of type WINDOW to NULL, use the symbol NULL_WIN like this:

	6.3.2. WIN_TYPE Data Type
	The data type WIN_TYPE is used whenever the type of window must be specified, such as when a window is created:
	Figure 6.4. Single- and double-border windows

	6.3.3. Window Types
	This section explains five types of windows: W_DOC, W_PLAIN, W_DBL, W_NO_BORDER, and W_MODAL, and defines the client area of a window.
	6.3.3.1. W_DOC (Top-level Windows)
	6.3.3.2. W_PLAIN and W_DBL
	6.3.3.3. W_NO_BORDER
	The type W_NO_BORDER is for a window without any border at all. Such a window can be created only if it is a child window. (Child windows can only be of type W_NO_BORDER or W_PLAIN; they are explained more fully later in this chapter.)
	Tip: To find out a window’s type:

	6.3.3.4. W_MODAL (Modal Windows)
	Modal Window Look-and-Feel
	Parent Window
	The following types of windows are valid parents for a modal window:
	Creation Flags

	The W_MODAL window supports the following creation flags:
	Creation Rectangle
	Modal Window Behavior

	A modal window’s enabled state does not depend on the state of its parent, unlike other parent/child relationships. A modal window cannot be created from an invisible parent, and the parent of a modal window cannot be made invisible (by calling xvt...

	6.3.4. Client Area
	All windows possess a client area, which is the inner rectangular area of the window that is used by the application.

	6.4. Creating Windows
	You can create XVT windows in three different ways, based on the needs of your application. In all cases, a WINDOW is returned from each creation. This value is your reference to the new window. You can create as many windows as your application need...
	XVT-Design can automatically create windows. See XVT-Design Manual for more details.

	6.4.1. Dynamic Windows
	Dynamic windows are created by your program, without any need for external resource definitions.
	Tip: To dynamically create windows at any time:

	6.4.2. Resource-based Windows
	Resource-based windows are created from external resource definitions. To create a resource-based window, you specify the window’s definition in XVT’s Universal Resource Language (URL). The application accesses it at runtime by means of the objec...
	You can create a resource-based window in XVT-Design. XVT-Design assigns a symbolic identifier, which corresponds to a resource ID, to the window. Functions can access the window by its symbolic identifier.

	6.4.3. Structure-based Windows

	6.5. Replacing and Retrieving Window Event Handlers
	Whenever you create an XVT task, top-level, or child window, you must specify an event handler for it. Later, you can substitute a new event handler for the window, using xvt_win_set_handler. In addition, you can retrieve a window’s current event h...
	For every window or dialog that you create, XVT-Design automatically defines the event handler function and supplies its name to the container’s creation function. XVT-Design also creates an event handler for the task window.

	6.6. Keyboard Navigation in Windows
	Keyboard navigation is the use of keyboard input, in lieu of mouse pointing and clicking, to interact with GUI objects. Generally, native look-and-feel for keyboard navigation includes using the Tab key and Shift-Tab key (back-tab) to traverse throug...
	Tip: To create a navigation object for a specified WINDOW:
	Tip: To destroy a navigation object:
	Tip: To retrieve the navigation object associated with a WINDOW:
	XVT-Design automatically creates the XVT_NAV object for you when you enable the Navigation check box using XVT-Design’s window attribute editor.

	6.7. Working with Child Windows
	A child window is one that is hierarchically related to a parent window. Child windows have several characteristics in common:
	6.7.1. Benefits of Child Windows
	XVT child windows allow you to nest windows within windows, and to establish a hierarchical model for defining the relationships between windows. Neither would be possible with top-level windows only, because they are independent of one another. Othe...

	6.7.2. Determining Parent Windows
	Tip: To determine the parent of any window:

	6.7.3. Listing Window Descendants
	Tip: To list the titles and window handles of controls, windows, and dialogs (only if W_SCREEN is parent) which have a specified parent WINDOW:

	6.7.4. Enumerating Windows
	Tip: To apply a function to the list of controls, child windows, and dialogs (only if W_SCREEN is parent) that have a specified parent WINDOW:
	Example: This code demonstrates the use of xvt_win_enum_wins to set application data for controls and later free the same data and destroy the controls:

	6.8. Associating Application Data with Windows
	Frequently, you’ll want to associate your own data with a window. Doing so allows you to keep window-related data with the window, rather than maintaining it somewhere else. In a word processor, for example, the application data might be the text o...
	Tip: To associate data with a window:
	Tip: To retrieve the value:

	6.9. Updating Windows
	This section explains drawing in windows and how clipping is implemented. Other functions, such as determining parent windows, window dimensions, and front-most windows, are common to multiple GUI objects.
	6.9.1. Drawing
	It’s a good idea to postpone drawing in a window until an E_UPDATE event occurs, because both initial drawing and repair of damage can then be handled together.
	Tip: To draw in a window:
	1. Revise whatever internal data structures you’re maintaining.
	2. Call xvt_dwin_invalidate_rect.

	Tip: To force all pending E_UPDATE events to be processed immediately (resulting in one or more calls to your event handler function):

	6.9.2. Clipping
	Anything your application draws in a window is clipped to the client area, so that nothing spills out into border areas or decorations. The default clipping rectangle of a window is its client area.
	Tip: To restrict the drawing area to just part of the client area:
	Tip: To determine the existing clipping rectangle:

	6.10. Window Titles
	Document windows and modal windows have a title, which is originally set when the window is created. You can change the title at any time by calling xvt_vobj_set_title. The function xvt_win_set_doc_title is similar, but it ensures that the title obey...

	6.11. Window Scrollbars and Scrolling
	The WSF_HSCROLL and WSF_VSCROLL flags, specified during window creation, indicate whether the window has horizontal and/ or vertical scrollbars. Scrollbars have no default range, so you need to set the ranges yourself.
	Tip: To set scrollbar ranges for a document window:
	Tip: To set a scrollbar’s proportion:
	Example: For example, if your document contains 500 lines, and your window can display 50 lines, then the scrollbar range would be 0 to 500, and the proportion would be 50.
	6.11.1. Proportional Scrollbars
	Proportional scrollbars are not supported on all platforms, but you don’t have to think about this when writing an XVT program. If you set the range and proportions correctly, the scrollbars behave appropriately on all platforms. On platforms witho...

	6.11.2. Scrolling
	When the user operates a window’s scrollbar, XVT generates the appropriate event. In responding to this event, your application usually updates the window, possibly by scrolling part of it with xvt_dwin_scroll_rect. It should then change the positi...

	6.12. Other Window Operations
	Tip: To get a list of all windows (top-level as well as dialogs):
	Tip: To determine a WINDOW’s type:
	Tip: To get the top-level or modal window that has keyboard focus or contains a child window with focus:
	Tip: To draw a borderless client-area-sized rectangle in a specified window, using the specified COLOR argument:

	6.13. Window Manipulation Functions
	Table 6.2 summarizes the XVT functions that you can use to manipulate windows.
	These functions also work with dialogs or controls. However, their behavior may differ when used with them.
	Table 6.2. Window manipulation functions

	7
	Dialogs
	XVT dialogs (sometimes referred to as dialog boxes), are similar to XVT windows. Typically, dialogs serve as containers for controls, and provide a means for presenting selection options to the user. Most native GUI platforms have some kind of dialog...
	7.1. Modal and Modeless Dialogs
	XVT provides two types of dialogs, modal and modeless. Dialog modality determines whether the application is frozen until the user responds to the dialog (see Figure 7.1). Dialogs are specified by using the WIN_TYPE enumeration:
	Figure 7.1. Modal and modeless dialogs
	Modal Dialogs

	Modal dialogs freeze an application until the user responds. In other words, a modal dialog forces the user to respond to it; once the user response has been received and acted upon, you must destroy the dialog by calling xvt_vobj_destroy. As you mig...
	Example: You would use a modal dialog to ask if the user wants to save the changes made to a document before closing the window. Because this question must be answered before the application can continue, it makes sense to have the dialog containing ...
	Example: The following code shows how you could structure an application to define, create, and manage a modal dialog. This dialog contains a push button which, when pressed, signals the application that the user has responded, and to destroy the dia...
	Modeless Dialogs

	Modeless dialogs behave much more like windows. The function called to create a modeless dialog (either xvt_dlg_create_def or xvt_dlg_create_res) immediately returns to the application without waiting for a user response to the dialog. The applicatio...

	7.2. Defining and Creating Dialogs
	You can define and create XVT dialogs in two ways: as resource- based dialogs or in-memory structures.
	7.2.1. Resource-based Dialogs
	Tip: To create a resource-based dialog:
	In URL, dialogs are defined in terms of both their own attributes (resource ID, size, title, modality, etc.), and the individual controls that they contain. By referring to the dialog’s resource ID, you can create a dialog simply by calling xvt_res...

	7.2.2. In-memory Structures
	You can use in-memory structures to define and create dialogs, as well as windows.
	Tip: To define an in-memory dialog and its controls:
	No matter how the dialog is defined and created, you should structure your application to respond to events by means of the dialog’s event handler. In XVT, you cannot add controls to dialogs after creation, so you should include all of the needed c...
	Modal versus Modeless Dialogs

	For modal dialogs (of WIN_TYPE WD_MODAL), the creation function returns only when the dialog is destroyed (via xvt_vobj_destroy). For modeless dialogs (of WIN_TYPE WD_MODELESS), creation functions return immediately after the dialog has been created,...

	7.3. Predefined Dialogs
	XVT supports several common dialog designs. You can use them as follows:

	7.4. Dialog Manipulation Functions
	XVT functions that manipulate dialogs often perform similar operations on windows and, in some cases, on controls. To use these functions, you need the WINDOW for the dialog of interest. This is always available within the dialog’s event handler. A...
	Table 7.1 shows the dialog manipulation functions.
	Table 7.1. Dialog manipulation functions

	8
	Controls
	Controls are the most common object of user interaction. XVT supports a wide variety of controls: push buttons, check boxes, radio buttons, edit fields, combo controls, static text, list boxes, scrollbars, group boxes, notebooks, icons, and text edit...
	Figure 8.1. Controls that can appear in dialog boxes
	E_CONTROL Events and Event Handlers

	Events related to controls are called E_CONTROL events. These events are sent to the event handler of the control’s parent window. This is because, unlike windows and dialogs, controls normally lack event handlers. (However, you can structure your ...
	Creating Controls

	You can define controls as resources bundled with a dialog or window, or add them at runtime to existing windows.You can’t add controls at runtime to existing dialogs, because most native GUI dialog handlers don’t allow this. However, you can cir...
	Working with Controls

	XVT allows the application to interact directly with any control. Some function calls might get or set the control’s state or change its attributes, while other calls are more control-specific, for example, inquiring about a list’s selection.
	8.1. Creating and Defining Controls
	You can create and lay out controls in XVT-Design. See XVT-Design Manual for more details.
	In XVT, you can define and create controls in three ways. These flexible methods are very similar to those used to create windows and dialogs:

	8.2. Control Event Structures
	As it does for windows and dialogs, the WIN_TYPE enumeration defines control types.
	EVENT and CONTROL_INFO Data Structures

	The EVENT and CONTROL_INFO data structures in the EVENT structure notify the application of control-related events:
	Based on the type of the control whose event is being reported, the appropriate substructure in the CONTROL_INFO structure is filled in:

	8.3. Descriptions of XVT Controls
	This section describes the controls that you can use in XVT. The descriptions cover all information about controls, including components, attributes, event-related information returned to event handlers about the control, manipulation functions, and ...
	8.3.1. Push Buttons
	Push Button Information
	Push Button Attributes
	Event Handling

	8.3.2. Check Boxes
	Check boxes let the user select from a group of checkable items. The major difference between check boxes and push buttons is that check boxes display a state (checked or unchecked), while push buttons simply provide a selection control with no state...
	Tip: To set the state of check boxes:
	Check Box Information
	Check Box Attributes
	Event Handling

	8.3.3. Radio Buttons
	Radio buttons are similar to check boxes. Like check boxes, the user can turn radio buttons on or off. However, radio buttons differ from check boxes in two respects: only one radio button in the group can be on (the rest must be off), and radio butt...
	XVT-Design automatically generates code to implement radio button groups. See XVT-Design Manual for more details.

	Tip: To convert any XVT control ID to a WINDOW:
	Radio Button Information
	Radio Button Attributes
	Event Handling

	8.3.4. Static Text
	Static text controls let you place read-only text strings into a dialog or window. These are not text strings in the XVT graphical text sense, but rather true controls without user interaction attributes.
	Static Text Information
	Static Text Attributes
	Event Handling

	8.3.5. Edit Fields
	Edit field controls let the user input a text string to the application. These controls vary in their appearance and behavior depending on the native GUI platform. For example, some systems provide small scrollbars for these controls on one or both e...
	Edit Field Information
	Edit Field Attributes
	Event Handling

	Based on the event information above, you can determine the following:
	Changing Behavior of Keys with Event Hooks

	You can intercept a key sequence in an edit field, to implement a specific action. For example, you might want to make the Enter key terminate input to the edit field and move the user to the “next” field in the dialog or window. To accomplish th...
	Tip: To use event hooks:

	8.3.6. List Boxes
	List boxes let the user make single or multiple selections from a scrollable list of candidate selections. List boxes generate E_CONTROL events to your dialog or window event handler when the user clicks or double-clicks on an item in the list box. Y...
	SLISTs

	To specify text strings for a list box and retrieve single or multiple selections, you use an XVT data type called an SLIST (short for String LIST). SLISTs are abstracted lists of strings, where each element contains a string pointer, an index (start...
	List Box Information
	List Box Attributes
	Event Handling

	Example: Because list boxes can be complex, here is an example of how you might write part of an XVT application using list boxes. In this example, an URL-defined dialog holds a single-selection list box containing eight items. When a user clicks one...
	First, here is the URL code for defining the dialog and list box control:
	Here is the dialog and list box creation code, and the dialog’s event handler:

	8.3.7. Scrollbars
	Horizontal and vertical scrollbar controls are similar in many ways to the scrollbars that you can define as part of a window’s border decorations. The only difference is that they are in fact controls, not border decorations. However, you can hand...
	The what field, of type SCROLL_CONTROL, indicates which part of the scrollbar was operated, as shown below:
	Scrollbar Information
	Scrollbar Attributes
	Event Handling

	8.3.8. List Button
	An XVT list button control is a combination of two other control types—a push button and a selection list. (Such controls are sometimes referred to as “combo controls” for this reason.) A list button can be described as a list box that can be d...
	List Button Information
	List Button Attributes
	Event Handling
	Miscellaneous Information About List Buttons

	Here are some additional considerations regarding XVT list buttons:

	8.3.9. List Edit
	An XVT list edit control is a combination of two other control types: an edit field, and a selection list. (Such controls are sometimes referred to as “combo controls” for this reason.) A list edit is an edit field control that possesses an alter...
	Tip: To determine the text string displayed in the edit field component:
	List Edit Information
	List Edit Attributes
	Event Handling

	Based on the list edit event information in the table above, you can also determine the following:
	Miscellaneous Information for List Edits

	Here are some additional considerations to keep in mind when using XVT list edits:

	8.3.10. Group Boxes
	XVT group box controls provide a way to draw an annotated rectangle around (and behind) a group of controls in a window or dialog. The group box rectangle has an embedded label or title, which appears on the upper line of the rectangle, and can be ei...
	Group Box Information
	Group Box Attributes
	Event Handling

	8.3.11. Notebooks
	Notebook controls allow the user to define multiple child windows for the same area of a window. Figure 8.2 shows a Win32 notebook.
	Figure 8.2. Win32 notebook control
	Figure 8.3. Notebook hierarchy

	8.3.11.1. Notebook Creation
	Creating Tabs
	Creating Pages
	Creating Faces
	Example: The following code will create the notebook in Figures 8.2 and 8.3 above:
	Notebook Information
	Notebook Attributes
	Event Handling
	Miscellaneous Information About Notebooks

	8.3.12. HTML Controls
	HTML controls give XVT applications the ability to draw text and images in a window using HTML data. The file location for the data is specified with a well-formed Universal Resource Locator (URL) string containing either a local file path or an Inte...
	HTML is a common format and the ability to leverage HTML within production applications is a powerful feature that extends the utility of an XVT application. The types of tasks you can perform with the HTML control and the HTML Rendering library include
	Platform Differences
	Activities
	HTML Rendering Library Functions

	Example: This code uses xvt_html_get_url_intercept to get the URL intercept handler so that it can be assigned to another HTML control.
	Example: This code uses xvt_html_set_url_intercept to set an URL intercept handler to redirect URLs.

	8.3.13. Icons
	XVT icon controls let you display platform-specific icons in dialogs and windows. The actual description (or resource definition) of an icon is handled differently for each XVT platform. However, once icons are described, XVT can portably include the...
	Icon Information
	Icon Attributes

	Here are some caveats regarding icon controls:
	Event Handling

	8.3.14. Text Edit Objects
	An XVT text edit object is a fully functional, multi-line edit control supporting many of the functions of other controls. These functions include:
	Strictly speaking, text edit objects are not native controls at all. They are implemented on top of the XVT API, using graphics primitives, graphics text, and XVT windows to create the object components. This is why you can place text edit objects on...
	Text Edit Information

	8.3.14.1. Text Edit Capabilities
	The text edit system is quite flexible. It allows you to:
	Figure 8.4. Three text edit objects in a window
	Figure 8.5. A window showing part of a single, borderless text edit object

	8.3.14.2. Text Edit Terminology and Geometry
	Figure 8.6. Text edit object’s view and border rectangles

	8.3.14.3. Using the Text Edit System
	This section describes techniques for manipulating text edit objects:
	Creating Text Edit Objects

	Tip: To create one or more text edit objects:
	Attributes (specified by TX_* constants) determine the following characteristics:
	Tip: To form the attribute argument:
	WIN_DEF Data Structures

	When specifying text edit objects with xvt_win_create_def and xvt_tx_create_def, you use WIN_DEF data structures. The WIN_DEF structure contains a substructure designed for text edit object definitions:
	TXEDIT Handles

	Text edit objects are identified by a TXEDIT handle which is equivalent to a WINDOW handle.
	Tip: To get the TXEDIT value for a text edit object, given its resource ID:
	Tip: To get the resource ID for a text edit object, given the TXEDIT value:
	Tip: To retrieve text edit objects for a particular window or for the entire application from a list internally maintained by the Portability Toolkit:
	Example: This code fragment shows how to use xvt_tx_get_next_tx to clear all text edit objects in an application:
	Event Handling

	Based on the event information above, you can determine the following:
	Setting Properties

	Tip: To change various properties of a text edit object:
	Getting Properties

	Tip: To retrieve current values, call one of the following functions:
	Tip: To retrieve various text edit sizes, call one of the following functions:
	Loading Text

	Tip: To load text into a previously created text edit object:
	Tip: To change existing text:
	Retrieving Text

	Tip: To retrieve the text from a text edit object (e.g., for searching or saving to a file):
	Selecting Text

	Tip: To explicitly set the text selection:
	Tip: To get the current selection:
	Text Edit Tab Stops

	Text edit controls automatically provide support for tabs. XVT sets tab stops at multiples of a predetermined tab stop distance. The tab stop distance depends on the font and size of the text—it is calculated as eight times an average character wid...
	Tip: To put tabs into the text programmatically:
	Scrolling

	There are two kinds of scrolling, automatic and manual:
	Clearing Text and Deleting Text Edit Objects

	Tip: To clear all text from a text edit object:
	Tip: To entirely eliminate a text edit object:

	8.3.14.4. Text Edit Size Limits
	A number of limits constrain the size of text edit objects. The first limit is set by the type, unsigned short, used for paragraph, line, and character numbers. Since unsigned short is sixteen bits (on most systems), this limit is 65,535 (64KB - 1). ...

	8.3.15. Treeview Controls
	Treeview controls give XVT applications the ability to display hierarchically-oriented information. The classic example of a tree is the explorer window for viewing directories and files.
	The Treeview control is a WINDOW of type WC_TREEVIEW.
	The treeview is a commonly seen GUI feature and the ability to provide trees within production applications is a powerful feature that extends the utility of an XVT application.
	Tree-specific types
	Treeview Attribute Constants
	Treeview API Library Functions

	8.4. Control Attributes
	XVT allows the application to get or set any control’s state or change its attributes. This section discusses two attributes that are apparent to end users—font and color.
	8.4.1. Control Fonts
	A control font is the XVT logical font used for all text in a control. Applications can set and query XVT logical fonts for all XVT Portability Toolkit (PTK) controls that contain text.
	8.4.1.1. Setting Fonts on Individual Controls
	Tip: To set the logical font for a single control:
	Tip: To obtain the current logical font for a single control:

	8.4.1.2. Setting Default Container Control Fonts
	Tip: To set the default logical font for all controls in a window or dialog:
	Tip: To obtain the default logical font for all controls in a window or dialog:

	8.4.1.3. Setting the Default Application Control Font
	The attribute ATTR_APP_CTL_FONT_RID can be used to set the resource ID of the application’s default control font (if not set, then XVT uses the native platform default control font). If you choose to set this attribute, do so prior to calling xvt_a...
	Example: The following code fragments demonstrate how ATTR_APP_CTL_FONT_RID is used to set the default application control font.

	8.4.2. Control Colors
	A control color is the color XVT selects for a component of a control, such as foreground, background, border, etc. Applications can set and query XVT colors for the most significant XVT Portability Toolkit (PTK) control components; for more details,...
	An XVT control inherits its component colors from its parent window or dialog, or from the application, or if no control component colors are set at any of these levels, from the native windowing system. A single control inherits each component color...
	8.4.2.1. Control Component Colors
	Each native platform supports different control component colors, but there is much overlap. XVT portably supports the most significant component colors, even though some component colors are not supported natively on all platforms. For details, refe...
	The following are valid XVT control color components defined for XVT_COLOR_TYPE:
	Figure 8.7. XVT control component colors (part 1 of 4)
	Figure 8.7. XVT control component colors (part 2 of 4)
	Figure 8.7. XVT control component colors (part 3 of 4)
	Figure 8.7. XVT control component colors (part 4 of 4)

	8.4.2.2. Setting Colors on Individual Controls
	Tip: To set the component colors for a single control:
	Tip: To obtain the current component colors for a single control:

	8.4.2.3. Setting Default Container Control Colors
	Tip: To set the default component colors for all controls in a window or dialog:
	Tip: To obtain the default component colors for all controls in a window or dialog:

	8.4.2.4. Setting Default Application Control Component Colors
	The attribute ATTR_APP_CTL_COLORS can be used to set the application’s default control component colors (if not set, then XVT uses the native platform’s default control colors). The attribute is set to the address of an XVT_COLOR_COMPONENT array....
	Example: This code demonstrates how ATTR_APP_CTL_COLORS is used to set default application control component colors (before calling xvt_app_create):

	8.5. Control Mnemonics
	A mnemonic character is a character in the title of a control or menu item used (by the application’s end user) to select or invoke the control or menu item via keyboard input. Mnemonic characters may be typed by application users in lieu of mouse ...
	8.5.1. Setting Control Mnemonics
	The mnemonic character is immediately preceded by a tilde (~) in the title text of the control:
	The methods for setting a mnemonic character in the title of non- editable control (pushbutton, check box, radio button, static text, or group box) in a window or dialog are:

	8.5.2. Getting Control Mnemonics
	You cannot directly extract a mnemonic character from a control title. You can, however, obtain a title text string, with any embedded mnemonic character, using either of the following approaches:

	8.5.3. Processing Mnemonic Characters
	Dialogs
	The processing of mnemonic characters in dialog controls is handled automatically by XVT and the native platforms. No special processing of characters is required (character events generally are not sent to dialog event handlers).
	Windows

	When a control in a window has focus and the user types characters, characters not processed internally by the control (both mnemonic and non-mnemonic) are passed as E_CHAR character events to the control’s parent (container) window. Your applicati...
	Keyboard navigation is not automatic in XVT windows. You may use the XVT navigation object (see section 6.6 on page 6-14) to handle E_CHAR events for keyboard navigation in windows, or you may implement your own navigation mechanism.
	Example: This code demonstrates how to process character events to trap mnemonic characters:

	9
	Menus
	XVT-Design lets you arrange the menubar and its items. You can specify resource identifiers, along with traits such as whether an item shows a check mark when selected, or whether it is initially disabled. This chapter contains background information...
	A menu presents a set of possible selections that allow a user to control the application. XVT menus are optionally attached to task and top-level windows. (You cannot attach menus to modal windows or dialogs.)
	Figure 9.1. Hierarchical menus on the Mac (on the Mac, Help appears under the Apple menu)

	9.1. Menu Definitions
	The following key definitions can help you understand the capabilities of menubars and hierarchical menus in XVT:

	9.2. Menu Events
	In XVT, menu selections generate either E_COMMAND events (for most selections), or E_FONT events (for selections from the Font/ Style menu or the Font Selection dialog). These events are sent to the event handler of the associated window. Each menu i...

	9.3. Defining Menus
	You can define menus in two ways:
	9.3.1. URL Menubar Definitions
	XVT-Design can create menubar definitions in XVT’s platform- independent Universal Resource Language (URL). This is the simplest way to create menus.

	9.3.2. MENU_ITEM Data Structures
	You can also define menus in XVT by using MENU_ITEM data structures. This approach works only with the function xvt_win_create_def. xvt_menu_popup, the function that creates pop-up menus, creates a new hierarchy inside the MENU_ITEM tree.
	Here is the MENU_ITEM data structure:
	Tip: To allocate in-memory menu definitions:
	Tip: To recursively free an in-memory menu definition:
	Converting URL Menu Definitions to MENU_ITEM Definitions

	You can automatically convert an URL-based menu definition to an in-memory, MENU_ITEM-based definition. This allows you to define all of your menus in URL, then read them into your program as in-memory structures to be used with functions that take a...
	Tip: To convert an URL-based menu definition:
	Tip: To free in-memory structures when you’re done with them:

	9.4. Managing Menus and Menu Attributes
	This section discusses functions that manipulate menus as well as the various menu attributes. Most of these functions refer to menus by the window that owns them, and reference the individual menu items by their tags.
	9.4.1. Creating a Menu Hierarchy without Resources
	If you do not have a menu in a resource description and need to create it from scratch, construct a MENU_ITEM tree yourself by either statically or dynamically creating it, then properly linking MENU_ITEM arrays in your code.

	9.4.2. Modifying Menus
	Tip: To modify an existing menu:
	1. Call xvt_menu_get_tree. This function retrieves a window’s menu and places it into in-memory MENU_ITEM data structures.
	2. Change the data structure contents.
	3. Call xvt_menu_set_tree to replace a window’s menu with the modified menu.

	9.4.3. Menu Item Strings and Menu Mnemonics
	Tip: To change the text of a menu item during program execution:

	9.4.4. Checking Menu Items
	When you define individual menu items (either in URL or as MENU_ITEM structures), you can specify whether the item is checkable and, if so, whether it is checked.
	Tip: To check/uncheck menu items to reflect their current state:

	9.4.5. Enabled or Disabled Menu Items
	Menu items can be shown as either enabled or disabled. You specify the initial state when defining the menu in URL.
	Tip: To enable/disable individual items and subsidiary menus:

	9.4.6. Separators
	You can define the separator menu item only when you create a menu. The separator appears as a platform-specific decoration in drop- down menus. The menu item is not selectable and no other attributes or functions can apply to it.

	9.5. Pop-up Menus
	A pop-up menu is a temporary menu displayed at a specified location over a window (only windows that can receive mouse events may be specified). Pop-up menus are created from a MENU_ITEM tree.
	Tip: To display a pop-up menu:
	The following enumeration type is used to position a pop-up menu with respect to a given window’s coordinate system:
	Example: This example demonstrates how to create different pop-up menus when a user clicks on different regions of a window:

	10
	Coordinate Systems
	XVT always expresses coordinates in pixels. “Pixel” is a shorthand term for “picture elements.” Pixels are the individual dots making up the image on a screen or printer.
	The point (0, 0) is at the upper-left corner, and the positive directions are to the right and down. This is true no matter what the underlying window system uses for its origin; if necessary, XVT translates.
	This chapter discusses the following topics that relate to coordinate systems:
	10.1. SCREEN_WIN and TASK_WIN
	Figure 10.1. SCREEN_WIN and TASK_WIN relationships and origins on different supported platforms
	Tip: To convert points across coordinate systems:

	10.2. Client Area Location
	The client area of a window is the part of the window in which you can draw. The client area starts just inside the window frame. The pixel located at (0,0) is the highest and farthest left point that you can draw on (in other words, it is the locati...
	Figure 10.2. Enlarged view of the upper-left corner of a window’s client area

	10.3. Coordinates for Drawing Text
	When you call xvt_dwin_draw_text at a starting point, the text starts at the x-coordinate and writes on a “baseline” located at the y-coordinate. Letters with descenders dip below the baseline.
	Figure 10.3. Text drawn at (100, 75)

	Example: When you draw text at the point (100,75), the text begins to the right of the x-coordinate imaginary line (value 100), and writes above the y-coordinate imaginary line (value 75). The placement of the letters in the drawn text is shown in Fi...

	10.4. Points and Rectangles
	Because points and rectangles are so widely used, XVT defines two data types for them, PNT for points and RCT for rectangles:
	Points and rectangles are simply mathematical entities; they don’t appear on the screen. You can use them for screen or window- relative coordinates, and any other purpose for which they’re convenient. The placement of both a single point and a r...
	Figure 10.4. A window’s coordinate system

	XVT provides several functions for manipulating PNTs and RCTs.
	Tip: To set the height of a rectangle:
	Tip: To get the height of a rectangle:
	Tip: To set the position of a rectangle:
	Tip: To get the position of a rectangle:
	Tip: To set the width of a rectangle:
	Tip: To get the width of a rectangle:
	Tip: To determine if a rectangle is empty :
	Tip: To set a rectangle to empty:
	Tip: To set a rectangle’s coordinates to specific values:
	Tip: To offset a rectangle horizontally and/or vertically:
	Tip: To test whether a point is in a rectangle:
	Tip: To determine whether two rectangles intersect and, if so, to get the intersection:

	10.5. Display and System Metrics
	When your application draws in a window, you can’t assume anything about the size of the screen, nor can you assume that pixels are square. For instance, a rectangle 100 pixels wide and 100 pixels high may not look like a square to the user. Also, ...

	11
	Drawing and Pictures
	Drawing refers to graphical operations performed in a window. Pictures are collections of drawing functions.
	XVT PICTUREs

	XVT provides an abstraction called a PICTURE for capturing graphics drawn into a window, for passing them to other applications via the clipboard, for archival, or for later redisplay. Essentially, PICTUREs are one of the set of XVT graphics primitiv...
	Portable Images

	XVT also provides a portable images feature, which manipulates, displays, and prints bitmapped graphic images (XVT_IMAGEs and XVT_PIXMAPs). You can use portable images in many ways, for example as graphics within windows, as labels for Toggle/Picture...
	11.1. Drawing
	In XVT, all graphical operations are window-specific. XVT graphical operations include the drawing of graphics or text, and the specification of graphical or textual attributes. Each window maintains its own set of graphical attributes (color, pens, ...
	11.1.1. Color
	You can specify colors for the outlines of shapes, for their interiors, and for text. This section focuses on the concept of color.
	The RGB Model

	XVT uses a 24-bit number to specify a color. The 24 bits are divided into three 8-bit values for the red, green, and blue components. This color model is referred to as the RGB model
	Predefined Colors

	For your convenience, XVT provides symbols for eleven colors:
	Using Colors on Monochrome Screens

	Regardless of which XVT implementation and target hardware you’re using, you can always use colors. XVT maps all requested colors (other than black and white) drawn with a solid pen or brush pattern to a grayscale pattern.
	Color Guidelines

	Since white-on-white and black-on-black makes whatever you’re drawing invisible, be careful about using more colors than the target hardware can support. Here are some guidelines:
	11.1.1.1. Allowing Users to Choose Colors
	Calling xvt_dm_post_color_sel brings up a dialog that allows the user to select a color. The dialog, shown in Figure 11.1 below returns the color the user has chosen.
	Figure 11.1. The color selection dialog

	11.1.2. Drawing Tools
	Each XVT window (but not dialog box or control) has a collection of associated drawing tools. The structure DRAW_CTOOLS records these tools:
	11.1.2.1. Pens
	A pen draws lines and the outline of closed shapes, while a brush is used for the interior of closed shapes. Figure 11.1 shows which shapes have a pen or a brush.
	Figure 11.1. XVT drawing functions that use a pen (P), brush (B), or neither (N)

	Tip: To specify characteristics of a pen:
	Figure 11.2. Stretching out a rubberband by dragging the mouse
	PAT_STYLE Structure

	The following is the PAT_STYLE structure. Values other than the three listed above can’t be used for pens, but the next section uses them for brushes. One value, PAT_NONE, is for XVT’s internal use and should never be used by an application.
	Pen Styles

	The following enumeration shows the pen styles used in the style field of the CPEN object. These pen styles are meaningful only when the pen pattern is PAT_SOLID. On some platforms, the native toolkit might not support these styles; thus XVT might no...
	Tip: To set a window’s pen:
	Tip: To explicitly assign a value to the current pen:
	Tip: To set the pen (and all of the other drawing tools):
	Tip: To find out the current pen:

	11.1.2.2. Brushes and Background Colors
	Tip: To specify characteristics of a brush:
	Figure 11.3. XVT’s predefined CBRUSH patterns
	Figure 11.4. A hatched brush (PAT_VERT, here) uses the brush color for the hatching and the background color for the open spaces and opaque text. The ink color for text is determined by the foreground color.

	Tip: To set the current brush for a window:
	Tip: To set the brush (and all of the other drawing tools):
	Tip: To find out the current brush:
	Tip: To set a window’s brush to a standard value:

	11.1.2.3. Foreground Colors—Opaque and Transparent Text
	Tip: To set the color for text:
	Tip: To determine whether text is drawn with an opaque background:

	11.1.2.4. Drawing Mode
	Tip: To set the current draw mode:
	M_COPY
	M_XOR

	The purpose of M_XOR is to temporarily show something on the screen. It does this by toggling what’s drawn on the screen, such that a second identical drawing operation restores what was present before the first drawing. This is important because y...
	M_XOR combines new and old pixels so that these rules are obeyed:

	11.1.2.5. Manipulating Drawing Tools
	Before drawing anything in a window, make sure that the window has the correct drawing tool settings by calling xvt_dwin_set_cpen, xvt_dwin_set_cbrush, xvt_dwin_set_draw_mode, and xvt_dwin_set_font as necessary. You can also set all the tools at once...
	Tip: To make a temporary change without affecting the current setting:
	Tip: To get a set of normal tools:
	The normal tools are also the default tools for a newly created window:
	Tip: To turn off clipping, use this function call:

	11.1.2.6. Allowing Users to Change Drawing Tools
	XVT also has the ability to let the user choose the different components of the DRAW_CTOOLS structure. The dialog shown in Figure 11.5 below has four tabs, and any or all of these tabs may be presented to the user by choosing various combinations of ...
	Figure 11.5. The drawing tools selection dialog

	11.1.3. Graphic Shapes, Text, and Pictures
	Tip: To draw shapes:
	Tip: To draw text:
	Tip: To draw an encapsulated picture:
	11.1.3.1. Rectangle Fills
	XVT uses an “exclusive model” to fill all rectangle-based areas. This applies to client and outer rectangles for windows, pixmaps, pictures, and images, as well as for clip rectangles, fills for drawn rectangles, oval arcs, and pie shapes. It als...
	The pixel size of a rectangle is computed like this:
	Figure 11.6. Exclusive model for rectangle fills

	11.1.3.2. Rectangle Outlines
	The line outlining a rectangle centers around the perimeter of the “exclusive” fill rectangle. This applies to rectangles, round rectangles, ovals, arcs, and pie shapes. This means that a single pixel-width outline goes through the points (rct.le...

	11.1.3.3. Lines, Polylines, and Polygons
	Lines, polylines, and polygons connect specified points. This differs from rectangle specifications as discussed in the previous section. Recall that for rectangles, the exclusive model specifies that the bottom-right point lies outside the drawn shape.
	Tip: To exactly overlay a rectangle on a line-based drawing:

	11.1.3.4. Line Caps and Joints
	XVT’s drawing model assumes a round pen of a prescribed width. This round pen approximation is not exact. For example, the Macintosh drawing model uses a rectangular pen; in this case emulating the round pen would yield unacceptable drawing perform...
	Figure 11.7. The round pen model, showing rounded line caps for a line (of width 5) drawn from x0,y0 to x1,y0

	11.2. Pictures
	XVT provides an abstraction called a picture, which combines a sequence of drawing operations—tool changes, shapes, and text— into a standard encapsulated form that other, non-XVT applications can interpret.
	An encapsulated picture is referred to by a 32-bit descriptor of type PICTURE, the internals of which are hidden from XVT applications:
	11.2.1. Creating and Accessing Pictures
	Tip: To create a picture:
	1. Call xvt_dwin_open_pict with a frame rectangle, relative to the current window, that delimits the part to be encapsulated.
	2. Draw in the current window. Instead of showing up on the screen, your actions are recorded.
	3. To return the PICTURE object when you’re done, call xvt_dwin_close_pict.

	Tip: To release storage when you no longer need a picture:
	Tip: To draw a PICTURE in the current window:
	Tip: To put a PICTURE onto the clipboard:

	11.2.2. Saving and Retrieving Pictures From Files
	If you want to save a PICTURE to a file, you must flatten it into a sequence of bytes.
	Tip: To save a picture to a file:
	1. Call xvt_pict_lock, which returns a character pointer and the number of bytes it points to.
	2. Write the data byte-by-byte with a call to the standard C functions fwrite or write.
	3. When you’re done with the pointer, call xvt_pict_unlock.

	Tip: To transform a flattened clipboard picture to a real picture:
	1. Call xvt_cb_get_data to get a flattened PICTURE from the clipboard.
	2. Call xvt_pict_create to transform it into a genuine PICTURE.

	12
	Portable Images
	XVT’s portable images feature lets your application manipulate, display, and print bitmapped graphic images—in several different file formats—on all XVT Portability Toolkit platforms. You can create images on the platform(s) of your choice and ...
	The portable images feature includes these key elements:
	Using Portable Images

	You can use portable images in many ways:
	12.1. Image Terminology
	This section defines three important terms that appear throughout this chapter: pixel, image, and pixmap.
	Pixel
	Image
	Pixmap

	12.2. Color
	All XVT graphics, image, and pixmap operations use a red-green- blue (RGB) color model. The COLOR data type provides eight-bit level resolution for each color component.
	12.2.1. Color Look-Up Tables
	The indexed color mode uses a color look-up table (or “CLUT”). Each pixel uses one byte as an index into the look-up table. A CLUT contains up to 256 COLOR entries. As a result, an image or pixmap that uses indexed color can contain up to 256 dif...

	12.2.2. Color Mapping
	If a region is transferred between images or pixmaps with different color formats, some colors in the region may be changed, or mapped, to different colors. Since different image color formats can represent different numbers of colors, colors in the ...

	12.3. Palettes
	While the XVT Portability Toolkit provides three different color formats, not all XVT platforms include hardware capable of supporting all three modes. To accommodate hardware with different color formats (for instance, 16-color or gray-scale display...

	12.4. Portable File I/O
	Your applications can use images created on different GUI environments because XVT Portability Toolkit functions can read several different image file formats. XVT supports the following formats:

	12.5. Working with Portable Images
	12.5.1. Images
	Memory-based images are central to the XVT Portability Toolkit’s portable image feature. Images translate between different file formats and different display hardware. Images can be drawn into pixmaps, windows, and printers.
	12.5.1.1. Image Data Types
	XVT_IMAGE
	XVT_IMAGE_FORMAT
	The XVT_IMAGE_FORMAT enumerated type defines three values for the color formats available for images:

	12.5.1.2. Creating and Destroying Images
	Tip: To create a new image:
	Tip: To fill the image with a solid color:
	Tip: To remove an image from memory when your application no longer needs it:

	12.5.1.3. Manipulating Images
	Images are independent of the window system—they are the same regardless of which platform your application runs on. Because images have no direct association with windows, you cannot use XVT Portability Toolkit drawing functions on images.
	Tip: To copy images to and from pixmaps:
	Tip: To copy some or all of one image to another image:
	Tip: To change the pixel values directly:
	Tip: To retrieve a pointer to a complete horizontal row of pixels:

	12.5.1.4. Color Look-up Tables for Indexed-color Images
	The color look-up table contained by images with the XVT_IMAGE_CL8 color format determines how the following functions convert pixel values to colors, when operating on these images:
	Tip: To query the number of entries in the color look-up table:
	Tip: To set the number of entries in the color look-up table:
	Tip: To retrieve color values from a color look-up table:
	Tip: To change a color value in a color look-up table:

	12.5.1.5. Drawing Images
	Tip: To draw an image:

	12.5.2. Pixmaps
	Pixmaps are essentially XVT WINDOWs with no visible screen representation. For most graphics operations, pixmaps are equivalent to WINDOWs. You can copy pixmaps into images, windows, and other pixmaps.
	12.5.2.1. Pixmap Data Types
	12.5.2.2. Creating and Destroying Pixmaps
	Tip: To create a new pixmap:
	Tip: To initialize a pixmap:
	Tip: To destroy a pixmap:
	Tip: To get the application data associated with a pixmap:

	12.5.2.3. Manipulating Pixmaps
	Tip: To use a pixmap as a destination for a drawing function:
	Most drawing functions can operate on pixmaps as well as windows. The following functions accept pixmaps and windows:

	12.5.2.4. Drawing Pixmaps
	Tip: To draw a pixmap:

	12.5.3. Color Palettes
	Color palettes let your application map the colors in an image onto the colors of the display hardware. Without color palettes, all image colors would be mapped onto the hardware’s default colors, which would prevent complex images from being rende...
	12.5.3.1. XVT_PALETTE Data Type
	Objects of type XVT_PALETTE represent color palettes. Because XVT_PALETTE is an opaque data type, your application can access and modify palettes only by using XVT-provided functions.
	Palette Types

	XVT provides several defined color palette types, which are enumerated by XVT_PALETTE_TYPE. Your application cannot modify palettes of any type except XVT_PALETTE_USER.

	12.5.3.2. Creating Color Palettes
	Tip: To create a new palette:
	Tip: To assign a palette to a window or pixmap:
	Tip: To destroy a palette when you no longer need it:

	12.5.3.3. Adding Colors to a Palette
	Tip: To add specific colors to a palette:
	When you call xvt_palet_add_colors, all windows associated with the palette receive an E_UPDATE event to update their contents, if necessary.
	Color Tolerance Attribute

	The two xvt_palet_add_colors* functions add colors to palettes according to a color tolerance attribute. A color is added only if it differs from all colors currently in the palette by an amount greater than the palette’s color tolerance. This “d...
	Tip: To set a palette’s color tolerance:
	Tip: To retrieve a palette’s color tolerance:

	12.5.4. Transfer Operations
	All pixmap and image transfer functions (xvt_dwin_draw_pmap, xvt_image_get_from_pmap, xvt_dwin_draw_image, and xvt_image_transfer) have two parameters of type RCT. These parameters specify the bounding rectangles of the region transferred from one im...

	12.5.5. File Operations
	The XVT Portability Toolkit (PTK) provides portable functions for reading several different common image file formats. Each of these functions returns an XVT_IMAGE, which your application can manipulate and display.
	Tip: To read and display images created on different platforms:
	Tip: To read images without specifying the file type:
	Tip: To save image files:
	Tip: To save an image in Macintosh PICT format (XVT/Mac only):

	13
	Scrolling
	To help you understand how to implement text scrolling in an XVT window, this chapter presents three sample algorithms for handling basic scrolling tasks:
	13.1. Basic Scrolling Concepts
	To understand what happens during scrolling, you should understand some basic scrolling terminology and concepts:
	Figure 13.1. Scrollbar terms

	13.1.1. Scrollbar Range
	The scrollbar range is the allowable set of values (or positions) the scrollbar thumb can have, both horizontally and vertically. Operating a horizontal scrollbar generates E_HSCROLL events; operating a vertical scrollbar generates E_VSCROLL events.
	Horizontal Range

	All horizontal scrolling is done in terms of pixels. The sample algorithms in this chapter use the length of the longest line, measured in pixels, for the horizontal range.
	Vertical Range

	Text applications commonly set the vertical range to be the number of lines of text in the document that is to be displayed in the window.
	Mapping from Lines to a Scrollbar Range

	In order to accommodate documents with more than SHORT_MAX lines, an application must also provide a mapping from lines to an artificial logical scrollbar range when it actually sets the vertical scrollbar’s range, thumb position, and proportion.

	13.1.2. Document Origin
	13.1.3. Thumb Position
	The thumb position indicates which part of the document is in view relative to the entire document:

	13.1.4. Thumb Proportion
	The thumb proportion sets the size of the scrollbar thumb relative to the range. It should indicate to the user how much of the document is currently visible in a window.
	Example: If half the text lines in the document are visible in the window, the thumb should take up half of the scrollbar range. If all the text lines are visible, the thumb proportion equals the scrollbar range and the thumb fills the scrollbar. In ...
	Range versus Thumb Proportion Size

	The usable part of the scrollbar range decreases by the size of the thumb proportion. This produces exactly the desired effect when implementing text scrolling—it confines the view to the bounds of the text, preventing the user from scrolling past ...
	Example: Consider a document with 100 lines (numbered 0-99), displayed in a window large enough to view 20 lines at a time. If the vertical scrollbar range is 0 to 100 and the thumb proportion is 20, the effective or usable range is 80. That is, the ...

	13.1.5. Auto-scrolling
	Auto-scrolling lets the user scroll the contents of a window without explicitly operating the scrollbars. To facilitate auto-scrolling, you should separate the code that calculates the amount to scroll the view from the code that actually shifts the ...

	13.2. XVT-provided Scrolling Functions
	XVT provides functions for setting the range, thumb position, and thumb proportion on a scrollbar:

	13.3. Sample Scrolling Algorithms
	This section outlines three sample algorithms, which accomplish three basic tasks to enable scrolling:
	13.3.1. Task 1: Maintaining the Scrollbar Settings (scroll_sync)
	A sample function called scroll_sync handles the first task, maintaining the scrollbar settings. This function is called during three of a window’s events: E_CREATE, E_SIZE, and E_FONT.
	Figure 13.2. Window at the end of a document

	13.3.1.1. Required Information for scroll_sync
	The algorithm for scroll_sync assumes that at least the following information is available. (For each document, this information is usually carried in a data structure attached to the window displaying the document.)

	13.3.1.2. Vertical Range and the VRANGE Macros
	scroll_sync uses a vertical range of 0 to 10,000. Using zero as a lower bound simplifies computation. The number 10,000 is large enough to ensure that not too many lines map to the same scrollbar position, and that the rounding error is insignificant.

	13.3.1.3. The scroll_sync Algorithm

	13.3.2. Task 2: Calculating the Amount to Scroll (do_scroll)
	A sample function called do_scroll handles the second task, calculating the amount to scroll.
	13.3.2.1. Required Information for do_scroll
	The algorithm for do_scroll requires the information needed by the previous algorithm, scroll_sync, plus the following additional information:

	13.3.2.2. The do_scroll Algorithm

	13.3.3. Task 3: Scrolling the View Window (shift_view)
	A sample function called shift_view handles the final task, scrolling the view in the window in response to scrollbar operation.
	The shift_view algorithm scrolls the view in the window. It first adjusts the document origin to reflect the amount scrolled, then calls xvt_dwin_scroll_rect to scroll the view. It also sets the new thumb position and, in text scrolling, forces an up...
	13.3.3.1. Required Information for shift_view
	The algorithm for shift_view requires the following information:

	13.3.3.2. The shift_view Algorithm
	13.3.3.3. A Sample Function for Auto-scrolling
	Auto-scrolling lets the user scroll the contents of a window without explicitly operating the scrollbars. For instance, if a user drags the mouse outside the bottom of a window, the view of the data in the window shifts to bring lines below the botto...
	To implement auto-scrolling, you follow these general steps:
	Sample shift_view Function for Auto-scrolling

	Below is a sample shift_view function. Note that this function works for an arbitrary window, whether text or graphics.

	13.3.3.4. Aligning Patterns
	The shift_view code in the previous section rounds the horizontal and vertical scrolling distances (dx and dy) to the nearest multiple of 8. This is done when scrolling graphical data that might contain background or fill patterns because native wind...

	13.4. Special Scrolling Situations
	The algorithms in this chapter have dealt with scrolling text in a window. You can easily modify them to scroll graphics in a window. However, in other situations you must customize your own scrolling methods:

	14
	Cursors and Carets
	A cursor is the pointer or other shape that indicates the current mouse position. A caret is a blinking vertical line that indicates where the next typed character will appear. In addition to discussing cursors and carets, this chapter tells how to t...
	14.1. Cursors
	The cursor indicates the current mouse position, with a pointer or other shape. Each XVT window has a current cursor that you can set to one of five standard shapes, or to a shape that’s defined as a resource.
	Tip: To set the cursor symbol:
	xvt_win_set_cursor can change the cursor (or mouse pointing symbol) immediately to one of the following standard cursors:
	Tip: To find the current shape:
	14.1.1. The Waiting Cursor
	When you want to indicate to the user that an operation will take a long time, you can easily set the cursor to the waiting shape (a wristwatch or hourglass).
	Tip: To set the waiting cursor:

	14.1.2. Hiding the Cursor
	While the user is typing, you may want to hide the mouse cursor to get it out of the way.
	Tip: To hide the cursor:

	14.2. Trapping the Mouse
	Occasionally, such as when the user is dragging the mouse, you don’t want the cursor shape to change, even if the mouse leaves the client rectangle of the current window. You also might not want the mouse to be used to perform any other activity, s...
	Tip: To trap the mouse:

	14.3. Carets
	A caret is a blinking vertical line that indicates where the next typed character will appear. Typically, applications use a caret when a window is in “text insertion” mode.
	14.3.1. Logical vs. Physical Carets
	Each regular (non-dialog) window in XVT possesses a “logical caret.” The xvt_dwin_set_caret_visible function turns the logical caret on and off. A window that has its logical caret turned on displays the physical caret when the window has the foc...

	14.3.2. Hiding the Caret
	In most cases, you won’t hide a caret for a window in “text insertion” mode, because XVT takes care of that for you as appropriate. However, you’ll want to hide the caret by using xvt_dwin_set_caret_visible(win, FALSE) in the following situat...
	Tip: To hide the caret while the user is typing:

	14.3.3. Positioning and Sizing the Caret
	If you are using the caret to track the insertion point for typing (the usual case), you should position the caret so that it aligns with the baseline of the text being drawn beside the caret.
	Tip: To reposition the caret:
	Tip: To set the caret size manually:

	15
	Fonts and Text
	The XVT Portability Toolkit features an encapsulated font model. Under this font model, an opaque object of type XVT_FNTID identifies a logical font. XVT defines a logical font as a description of a desired physical font—a particular implementation...
	When your application needs to draw text, for instance in a window, the Toolkit’s font mapping controller maps (i.e., matches) the specified logical font to the closest available physical font. The physical font is then used for rendering the text.
	XVT’s encapsulated font model includes these key elements:
	Figure 15.1. Using a logical font

	15.1. Font Terminology
	To help you understand how XVT’s encapsulated font model works, this chapter uses the following XVT-defined terms.

	15.2. Basic Font Concepts
	This section briefly describes the following basic concepts of the encapsulated font model: logical font attributes, logical font functions, font mappers, Font Selection dialogs, and Font/Style menus. All are explained in greater detail in later sect...
	15.2.1. Logical Font Attributes
	Logical font attributes describe a desired physical font. All the attributes except the native descriptor are portable:

	15.2.2. Logical Font Functions
	XVT provides many functions that manipulate logical fonts. Basically, you can perform the following operations on a logical font:

	15.2.3. Font Mappers
	A font mapper matches a logical font with an equivalent physical font. XVT’s encapsulated font model supports a multi-level font mapping strategy—you can write your own mapper, provide mappings for the URL font mapper, or simply use the default X...
	Figure 15.2. How the font mapping controller works

	15.2.4. Font Selection Dialogs
	XVT’s encapsulated font model lets application users interactively set logical font attributes in a dialog. XVT provides a Font Selection dialog that shows all the physical fonts on a given system (the dialog conforms to native look-and-feel). Or, ...

	15.2.5. Font/Style Menus
	On some systems, users can also interactively set logical font attributes by means of a Font/Style menu. Applications don’t supply their own Font/Style menus, because these are inherently non-portable. Instead, XVT provides appropriate standard men...

	15.3. Logical Fonts
	A logical font is a description of a desired physical font. The description is composed of attributes such as the typeface family name, size, and style. The attributes describe the physical font that the application eventually wants to be mapped onto...
	15.3.1. Logical Font Attributes
	The tables in this section show logical font attributes: portable and non-portable. The third column in each table indicates whether you can set or get each attribute, and also whether you can get the mapped value of the attribute (i.e., the attribut...
	15.3.1.1. Portable Attributes
	The following table shows the portable attributes that you can use to describe a logical font:

	15.3.1.2. Non-portable Native Descriptor Attribute
	The following native descriptor attribute is filled in when a logical font is mapped, either by the application (with an application- supplied font mapper) or by the XVT Portability Toolkit (with the URL mapper or the XVT default font mapper):

	15.3.1.3. Mapped Logical Font Inquiry Attributes
	The attributes in the following table represent inquiries you can make about mapped logical fonts:

	15.3.1.4. Default Logical Font Attribute Values
	The default logical font attributes are:

	15.3.2. XVT_FNTID
	A logical font is identified by an object of type XVT_FNTID, which is opaque to applications. Because the XVT_FNTID is opaque, you cannot directly access its internals. Instead, XVT provides access functions that you can use to get and set its attrib...

	15.4. Working with Logical Fonts
	This section describes some of the actions you can perform on logical fonts. The next section, section 15.5, describes font mapping functions.
	15.4.1. Creating and Destroying Logical Fonts
	To use a new logical font in an application, your application must allocate it in one of several ways:
	Tip: To create a logical font:
	Tip: To change logical font values from their defaults:
	Tip: To free the space used by an application-owned logical font:

	15.4.2. Using Logical Fonts from Resource Files
	Instead of creating logical fonts with xvt_font_create, you can define them in resource files. For example, if your application knows in advance that it needs several logical fonts with known attributes, you could define them all as resources.
	Tip: To use logical fonts from a resource file:
	1. Define the logical fonts in an URL file, using font or font_map statements.
	2. Call xvt_res_get_font to allocate the logical fonts.

	15.4.3. Logical Font Ownership
	An application owns any logical fonts it creates. This applies to logical fonts created by these functions: xvt_font_create, xvt_res_get_font, xvt_dwin_get_font, xvt_menu_get_font_sel, and xvt_tx_get_font.

	15.4.4. Setting and Getting Logical Font Attributes
	If your application needs to set or get logical font attributes, it can call the logical font attribute access functions. Setting any attribute to a new and different value invalidates any previous font mapping.
	Example: This example shows how you can construct a 14-point, bold, italic Helvetica logical font:
	Tip: To set logical font attributes:
	Tip: To set logical font attributes for a font associated with a window:
	Tip: To get portable logical font attributes:
	Tip: To get portable logical font attributes for a font associated with a window:
	Tip: To get mapped logical font attributes:
	Tip: To get mapped logical font attributes for a font associated with a window:
	Example: The following code creates a logical font and sets the values of its portable attributes. It then maps the font, assigns it to a window, and draws text in the window.
	15.4.4.1. Setting Native Font Descriptors
	When a logical font is mapped, its portable attributes are matched to the closest available physical font. If you want to exactly specify a particular physical font, your application must use a native font descriptor. This is usually done inside an a...
	You can use a native font descriptor in two ways:
	Native Font Descriptor String

	A native descriptor is a string of data fields that textually describe a physical font that resides on your system. The fields in the descriptor represent the internal, or native, font selection attributes present on each platform (for example, lfWei...
	The native font descriptor string contains the following data:
	The native font descriptor, then, has this format:
	System and Version

	The system and version identifier in the native font descriptor must be one of the following:
	Platform-specific Parameters

	In the native font descriptor, you can provide parameters for the following platforms: XVT/Win32, XVT/Mac, and XVT/XM. You can also provide parameters for PostScript printing on XVT/XM.
	Setting and Verifying Native Font Descriptors

	Tip: To set the native font descriptor for a physical font:
	Tip: To determine if a native description is valid:

	15.4.5. Assigning Logical Fonts to Controls and Windows
	15.4.5.1. Controls
	Tip: To assign a logical font to a control:
	Tip: To get logical font information for a control:

	15.4.5.2. Windows
	Tip: To assign a logical font to a window:
	Tip: To get logical font information for a window:
	Example: The sample code below creates a logical font and uses it to set the drawing font for a window. The following code creates a logical font, sets family, style, and size attributes for it, assigns it to a window, and destroys it. Text drawn int...

	15.4.6. Copying Logical Fonts
	You can copy logical font values from a source font to a destination font. You need not copy the entire logical font. A font attribute mask in the copying function tells which portions of the logical font to copy.
	Tip: To copy a logical font:

	15.4.7. Verifying a Font ID
	Tip: To determine if a font ID has been defined:
	Tip: To identify a NULL font ID:

	15.5. Font Mapping and the Font Mapping Controller
	Before the XVT Toolkit can use any logical font—for drawing text or answering inquiries about its mapped attributes—it must be mapped into some available physical font. An XVT function called the font mapping controller, which is invoked by xvt_f...
	15.5.1. Font Mapping in an Encapsulated Font Model
	Tip: To list all logical font families supported by the font mapping controller:
	Tip: To get attributes for supported logical fonts:

	15.5.2. The Multi-Level Mapping Process
	When XVT code automatically calls for mapping, or when you manually call xvt_font_map, the font mapping controller proceeds to map the logical font. It does this by trying the following multi-level methods in the order shown:

	15.5.3. Types of Mappers
	The multi-level mapping approach embodied in the font mapping controller can use four types of mappers:

	15.5.4. When Mapping Occurs
	The font mapping controller is called in two situations, depending on whether the logical font needs to be mapped automatically or whether mapping has been manually requested:

	15.5.5. Mapping and Unmapping Logical Fonts
	As explained in the previous sections, mapping occurs automatically for previously unmapped logical fonts whenever XVT needs to draw text or acquire text width or text metrics. But you can also map logical fonts manually, for example in an applicatio...
	You can also call different functions to inquire about mappings and mapped attributes, or to unmap a logical font. Unmapping a logical font does not affect any of the portable attributes or the native descriptor, but it does release any physical font...
	Tip: To manually map a logical font:
	Tip: To unmap a logical font:
	Tip: To determine if a logical font is mapped:
	Tip: To determine if a logical font is mapped to a print font:
	Tip: To determine if a mapped logical font can be scaled:
	Tip: To get mapped logical font attributes:

	15.5.6. Application-Supplied Font Mappers
	If you wish, you can create an application-supplied font mapper for your application. You then register the application-supplied font mapper by using xvt_vobj_set_attr to set the XVT_FONT_MAPPER attribute. You can retrieve current application font ma...
	Tip: To use an application-supplied font mapper:
	1. Create your application-supplied mapper.
	2. Set the ATTR_FONT_MAPPER attribute. For example:

	The application-supplied font mapper can map a logical font in two ways:
	Example: Here is an example of a simple application-supplied font mapper for XVT/XM, which uses the native method described above:

	15.5.7. URL Font Mapper
	You can place font definition and font mapping statements in an application’s URL file for two purposes:
	15.5.7.1. URL Font Resource Types
	To provide font mapping extensions or define logical fonts in the URL file, you’ll specify two URL resource types: font and font_map.
	font Resource Type

	Example: Here is an example of how you would define “MYFONT101” in your URL file:
	font_map Resource Type

	The native_desc portion of the font_map statement is a native descriptor string. It is the same as the optional native_desc portion of the URL font statement. It has the format required by the function xvt_font_set_native_desc, and returned by the fu...
	Example: Here is an example of how you would define a native mapping for “MYFONT101” on XVT/XM:

	15.5.7.2. Using Multiple Resources for a Logical Font
	You can use multiple URL font resources for the same logical font, varying only the native descriptor used as the value of the map keyword. The URL font mapper tries to use the mappings defined in the font statements, in numerically increasing order ...
	Example: The following URL code example shows how you could define five logical fonts along with five mappings for them on XVT/XM:

	15.5.8. XVT Default Font Mapper
	The XVT default font mapper is the “last chance” mapper. It includes mapping for at least the four standard logical font families that XVT guarantees to support: System, Fixed, Times, and Helvetica. Logical fonts with these family names are guara...
	A logical font is capable of being mapped as soon as it has been created with xvt_font_create. XVT’s default mapper makes no assumptions about what attributes the application has set in the logical font. XVT’s default font mapper interprets the l...

	15.6. Font Selection Dialogs
	Application users can interactively set logical font attributes from a dialog. XVT provides a Font Selection dialog for this purpose, with native look-and-feel, or you can provide a customized one. In the Font Selection dialog, users can select the l...
	Tip: To get the current state of the Font Selection dialog or the Font/Style menu:
	Tip: To set the default logical font for a dialog or the Font/Style menu:
	15.6.1. Implementing a Font Selection Dialog
	XVT supplies a Font Selection dialog with a native look-and-feel. This dialog is accessible from any menubar that uses the DEFAULT_FONT_MENU. With it, your application can give users a native look-and-feel dialog from which they can choose a physical...
	Tip: To use XVT’s Font Selection dialog:

	15.6.2. Customized Font Selection Dialogs
	You can write customized Font Selection dialogs for your applications. When you do this, you have two basic options:
	15.6.2.1. Implementing a Customized Font Selection Dialog
	After you create a customized Font Selection dialog, you then register the customized font dialog by using xvt_vobj_set_attr to set its attribute.
	Tip: To use a customized font dialog:
	When creating a customized selection dialog, you can use the following inquiry functions:

	15.6.2.2. Guidelines for Creating Customized Dialogs
	When creating a customized selection dialog, you should follow these guidelines:
	1. The user should be allowed to cancel the dialog without changing the logical font.
	2. The user should be allowed to change numerous logical font attributes before dismissing the dialog.
	3. The Font Selection dialog should be modal.
	4. The dialog should send an E_FONT event to the window whose WINDOW is passed into the function if the user makes a selection from the dialog. If the calling function doesn’t want an E_FONT event to be sent, it should pass NULL_WIN as the window p...
	5. If the default_font_id is modified, the function should return TRUE. If the default_font_id is not modified, the function should return FALSE.
	6. The dialog should test to see that the passed-in window is not NULL_WIN before generating an E_FONT event. Similarly, the dialog should confirm that the default_font_id is still valid before modifying it.
	7. If the window passed in is NULL_WIN, or if the user cancels the dialog instead of exiting normally, no event is generated.
	8. If the user makes a selection from the dialog and exits normally, the modified default_font_id should contain a reasonable set of logical font attributes that correspond closely to the dialog selection. This includes the family, style, and size. I...

	15.7. Font/Style Menus
	On some platforms (XVT/XM and XVT/Mac), application users can set logical font attributes from a Font/Style menu. You can add this menu to your application by using DEFAULT_FONT_MENU in its URL file.
	15.7.1. Implementing a Font/Style Menu
	From the Font/Style menu, users can select a logical font style, family, or size. Selecting attributes from the Font/Style menu generates an E_FONT event. The XVT_FNTID member of the E_FONT event represents the user’s selection, including family, s...
	Tip: To get the state of check marks on the Font/Style menus:
	Tip: To set the font selection and check marks for the Font/Style menu:

	15.7.2. Responding to User Font Changes
	Applications can use the Font/Style menu or Font Selection dialog to select the attributes of a logical font. Such a selection causes the Toolkit to notify the application that changes have been made to the logical font attributes. When that happens,...

	15.8. Working with Text
	This section contains information about: 1) how to determine text width and font metrics for mapped logical fonts, 2) how to show highlighted text selections, and 3) a method for storing logical font information in a file.
	15.8.1. Text Width and Font Metrics
	To determine the width of a text string and metrics for a mapped logical font, you’ll use these functions:
	Figure 15.3 illustrates font metrics, which consist of the ascent, the descent, and the leading.
	.
	Figure 15.3. Font metrics

	Tip: To find the width of a string in the specified window’s current logical font:
	Tip: To find out the leading, ascent, and descent of a mapped logical font:

	15.8.2. Showing Text Selections
	Text editing applications often must show a text selection as the user drags the mouse across a paragraph of text with the button down, as shown in Figure 15.4.
	Figure 15.4. Selected text

	Tip: To show text selections within a single line:
	1. On an E_MOUSE_DOWN event, round the horizontal and vertical coordinates of the mouse position to the nearest character starting position. Save that point in two variables, p and s1. Trap the mouse with trap_mouse. To remove the caret if there is o...
	2. On an E_MOUSE_MOVE event (with the mouse down), round the mouse position to the nearest character starting position, and store it in q. That character, the one to the right of this point, is not part of the selection (yet).
	3. Using xvt_rect_set, construct a rectangle from p (from step 1) to q (from step 2). The height of this rectangle is the height of the line, which your application determines. In simple cases it is the ascent plus descent plus leading that you obtai...
	4. Set the pen to hollow, the brush to PAT_SOLID and COLOR_BLACK, and the draw mode to M_XOR. Then call xvt_dwin_draw_rect to draw the rectangle calculated in step 3.
	5. Replace the value of p (first set in step 1) with the value of q.
	6. Keep performing steps 2 through 5 as long as E_MOUSE_MOVE events occur. On the next E_MOUSE_UP, round off the mouse point as before and store it in the variable s2. Call xvt_win_release_pointer. At this point the selection is from s1 to s2, and it...
	7. If s1 equals s2, the user did not drag the mouse, but merely clicked it. No selection has been shown because, even if an E_MOUSE_MOVE occurred, the rectangle drawn in step 4 was empty. This means that the user merely wanted to set the insertion po...

	Also, you’ll usually want to allow a double-click (E_MOUSE_DBL) to select a complete word. Since the E_MOUSE_DBL follows E_MOUSE_DOWN and E_MOUSE_UP events, the algorithm given is executed prior to receiving the E_MOUSE_DBL. Clear the selection by ...

	15.8.3. Transferring Logical Font Information
	The XVT Portability Toolkit provides two functions that can serialize a logical font for writing to a file and deserialize it when reading from a file. If an application wants to preserve a permanent copy of a logical font, it must maintain the follo...
	Tip: To serialize logical font attributes:
	Tip: To deserialize logical font attributes:

	16
	Clipboard
	This chapter discusses the following topics related to using the clipboard:
	16.1. Clipboard Formats
	XVT supports two predefined clipboard formats, for text and pictures, as well as an unlimited number of application-defined formats. A value of type CB_FORMAT indicates the format:
	16.1.1. CB_TEXT
	The CB_TEXT format consists of a sequence of ASCII characters, possibly broken into lines that are terminated with an end-of-line sequence whose value is in the constant EOL_SEQ.

	16.1.2. CB_PICT
	The CB_PICT format consists of a linear sequence of bytes that represents an encapsulated picture. The internals of this format are undefined, but you can safely pass the bytes from one address space to another (unlike a non-linearized PICTURE):

	16.1.3. CB_APPL
	The CB_APPL format lets you put your own data structures onto the clipboard, presumably for use by other applications that know about those data structures. Each format has a name, which consists of 1 to 4 alphabetic and/or numeric characters. When r...

	16.2. Putting Data On the Clipboard
	Tip: To put CB_TEXT or CB_APPL data on the clipboard:
	1. Allocate clipboard memory with xvt_cb_alloc_data, which returns a pointer, and move your data there. (Note: This is required. It’s not enough to have allocated memory with malloc, or even with xvt_gmem_alloc. For CB_PICT data, all you need is a ...
	2. Open the clipboard with xvt_cb_open.
	3. Put your data onto the clipboard with xvt_cb_put_data.
	4. Close the clipboard with xvt_cb_close.
	5. If you called xvt_cb_alloc_data, free the clipboard memory with xvt_cb_free_data.

	Example: The following code shows the steps for putting text onto the clipboard.

	16.3. Getting Data Off the Clipboard
	Tip: To get data off the clipboard:
	1. Determine if the format you desire is available by calling xvt_cb_has_format (perhaps several times for different formats).
	2. If a usable format is present, open the clipboard with xvt_cb_open and retrieve a pointer to and the size of the data with xvt_cb_get_data.
	3. If the data is CB_TEXT or CB_APPL, immediately move it into an area of memory that you have allocated (perhaps with malloc or xvt_gmem_alloc) because the data on the clipboard that the pointer addresses might disappear when you close the clipboard.
	4. If the data is CB_PICT, capture it by calling xvt_pict_create.
	5. As soon as possible, close the clipboard with xvt_cb_close to allow other applications to access it.

	Example: The following code segment shows the operations used in getting data off the clipboard. Note that the type of format is checked first.

	16.4. Handling Cut, Copy, and Paste Commands
	If possible, every application should implement the Cut, Copy, and Paste items on the standard XVT Edit menu:
	Putting Data On the Clipboard

	When putting data on the clipboard, you should try to cast the data into both CB_TEXT and CB_PICT formats if possible, or one of them at least. You should also put the data into one or more of your own CB_APPL formats.
	Getting Data Off the Clipboard

	17
	Files
	This chapter discusses how to handle files for XVT applications. It covers the following topics:
	17.1. Portable Filenames, Directories, and Types
	17.1.1. SZ_FNAME Constant
	The symbol SZ_FNAME defines the length of filenames supported (include '/0').

	17.1.2. SZ_LEAFNAME Constant
	The XVT constant SZ_LEAFNAME defines the maximum byte length of a single token in a file pathname (a directory name or a filename). This maximum value takes into account any file extensions (including the periods ‘.') but excludes pathname delimite...

	17.1.3. FILE_SPEC Data Type
	The operating systems underneath the various XVT implementations handle file and directory names quite differently. As a result, XVT must provide an abstract way to refer to files, directories, and file types. It does this with the data type FILE_SPEC:

	17.1.4. DIRECTORYs
	The internals of a DIRECTORY are hidden from XVT applications. Consequently, you must not assume that a directory specification is even a character string. Whenever the user enters a file specification using the standard file dialogs, the application...
	Several XVT functions let you portably manipulate a DIRECTORY.
	Tip: To change the default DIRECTORY to the DIRECTORY that was current when the application started:
	Tip: To get the present current directory:
	Tip: To set the directory to a specific DIRECTORY:
	Tip: To save the current DIRECTORY:
	Tip: To restore the current DIRECTORY:
	Tip: To convert an abstract DIRECTORY to a local, non-portable string:
	Tip: To convert a local, non-portable string to an abstract DIRECTORY:
	Tip: To construct a native (single-byte or multibyte) pathname string from the pathname pieces:
	Tip: To parse a (single-byte or multibyte) pathname string, breaking it into pathname tokens (volume name, directory path, leaf root name, leaf extension, and leaf version):
	Example: This example shows how you might use SZ_LEAFNAME with xvt_fsys_parse_pathname to parse a file pathname:

	17.1.5. File Types
	Tip: To set the file type:

	17.2. Getting and Setting File Attributes
	17.3. File Input and Output Using Standard Functions
	You can open, create, read, write, and perform other operations on files using standard C functions—XVT doesn’t have to provide specific toolkit-independent support for these. However, XVT does provide portable functions for these operations:

	17.4. Processing Selected Files
	It’s possible for the application to be started when the user selects one or more documents. XVT provides functions to get the names of these files.
	Tip: To find out how many files were selected, and their names:
	1. Call xvt_app_file_count.
	2. Call xvt_app_get_file repeatedly, until it returns NULL.
	3. After processing a file, call xvt_app_set_file_processed to indicate that you’re done with it.

	Tip: To get a list of all files and/or directories in the current directory:

	17.5. Standard File Dialogs
	Each toolkit on which XVT runs has standard file dialogs that applications use to get filenames from the user. Figure 17.1 shows an example of the standard Open dialog, which gets the name of a file to open. Figure 17.2 shows an example of a standard...
	Figure 17.1. Open dialog
	Figure 17.2. Save dialog

	Tip: To display the standard Open dialog:
	Tip: To display the standard Save dialog:
	Tip: To display the standard Directory dialog:

	18
	Printing
	This chapter contains information about the following printing topics:
	18.1. Basic Printing Steps
	The basic XVT model for a printing cycle involves the following steps:

	18.2. Print Records and Print Windows
	XVT uses objects of type PRINT_RCD (print record) to keep track of the printing context, including the page setup. The actual printing is done into a “print window” (a WINDOW of type W_PRINT) similar to drawing into a normal screen window.
	18.2.1. Print Records
	Most printing functions require information about the printer. This contextual information is provided in a print record. This section gives information on creating, using, and destroying a default print record.
	18.2.1.1. PRINT_RCD Data Type
	XVT does not expose the actual declaration of a print record. Instead, XVT supplies a fictitious declaration so that applications can declare pointers to a PRINT_RCD:
	Tip: To create a default PRINT_RCD:
	Tip: To destroy a print record you no longer need:

	18.2.1.2. Using Print Records
	You should save a document’s print record for at least the duration of a print cycle.You may opt to save it longer, since it can contain page setup information that the user has set and will expect your application to remember.
	Tip: To determine if the print record is valid for the current printer:

	18.2.2. Print Windows
	Printing is an operation very similar to drawing into normal screen windows. This section provides information on creating, using, and destroying a print window.
	Tip: To create a print window:
	1. Call xvt_print_create to obtain a print record.
	2. Pass this print record to xvt_print_create_win. You must supply the name of the document to be printed so the print spooler or network can identify the job.

	Tip: To use the print window:
	Tip: To destroy the print window:
	1. When the print job is completed, destroy the print window by calling xvt_vobj_destroy, passing the print window as its parameter.
	2. After the print window has been destroyed, you can optionally destroy the print record by calling xvt_print_destroy.

	18.3. Printing to a Print Window
	This section discusses print pages, print bands, and portable print functions.
	18.3.1. Print Pages
	In XVT printing, a print job is divided into pages.
	Tip: To start a new page of printing:
	Tip: To end a page of printing:

	18.3.2. Print Bands
	Each page of a print job is divided into rectangular bands. On most platforms there is only one band per page. However, on platforms in which native memory limitations occur, there are multiple bands. The number of bands is in part determined by the ...
	Tip: To print a page of print bands:
	1. Call xvt_print_get_next_band repeatedly in a while loop until it returns NULL. For each band, print at least the portion of the page that lies within the rectangle returned by xvt_print_get_next_band. Any drawing outside of the rectangle will be c...
	2. Use xvt_dwin_is_update_needed to determine if a particular rectangle of interest intersects the print band.

	18.3.3. Writing a Portable Printing Function
	On some XVT platforms, printing is performed in a separate thread of execution. To ensure portability, the print job should be encapsulated in a single function. This function begins with a call to xvt_print_create_win and ends with a call to xvt_vob...
	You must define a function similar to this:
	18.3.3.1. Invoking Your Printing Indirectly
	To execute your printing function, call xvt_print_start_thread. Do not call your printing function directly. XVT will call it for you, as shown in this example:

	18.3.3.2. Print Thread Implementations
	On platforms that do not support thread based printing, the xvt_print_start_thread function simply calls your print function and is implemented like this:

	18.3.4. Calls You Can Make From a Print Function
	You can call the following XVT functions from a print function:

	18.3.5. Sample Print Function
	The following function shows the basic procedure to print a document. Remember, a print function must be called by xvt_print_start_thread, as shown earlier in this section.

	18.4. Printing Restrictions
	Printing can occur in a separate thread, and this thread can share data with the main thread. To protect data from corruption, XVT imposes strict restrictions on what you are allowed to do in a printing function:

	18.5. Printer Page Setup
	This section discusses modifying the print context record and querying the printer attributes.
	18.5.1. Page Setup Dialog
	You can display a standard dialog to let the user adjust the page setup and store the settings in the print record. Figure 18.1 shows a typical page setup dialog.
	Figure 18.1. Standard Page Setup dialog on MS-Windows

	Tip: To display a standard page setup dialog:

	18.5.2. Print Metrics
	Tip: To find the total size of a page and the printer’s resolution:
	The following code demonstrates querying printer metrics:

	18.6. Aborting a Print Job
	On most platforms, while a print job is underway, XVT displays a dialog box that lets the user abort the job. On XVT/XM, however, the application does not communicate with the printer. Instead, these platforms create a PostScript file that the applic...

	18.7. Initiating and Terminating Printing
	Before calling any printing functions, you must have previously called xvt_print_open. However, XVT’s printing functions xvt_print_create and xvt_print_create_win make this call automatically. XVT provides these functions to enable printer attribut...

	18.8. Printer Driver Issues
	XVT attempts to take the most general approach to working with printer drivers (on platforms which support them). XVT implements its printing API to the printing specifications of the operating system vendors. Printing with XVT is not guaranteed to w...

	19
	Multibyte Character Sets and Localization
	This chapter introduces the terminology, concepts, and methods involved in developing XVT applications that support locales and international languages. The XVT Portability Toolkit (PTK) application programming interface (API) and XVT resource files ...
	XVT-Design can generate its standard application code and resources in internationalized form and supports easy localization of developer-written code.

	19.1. Around the World with XVT
	19.1.1. About Internationalization and Localization
	This section highlights some of the general issues involved in adapting applications for international language and locale support.
	19.1.1.1. Why and When to Adapt an Application
	19.1.1.2. How to Adapt an Application
	This section describes an overall methodology for writing XVT applications that support locales and international languages. Then the section provides specific steps you can follow to implement the methodology.
	Additional details are provided for customers who have access to XVT-Design. Paragraphs formatted like this paragraph introduce XVT-Design-specific information.
	Internationalization

	Internationalization requires disassociating any locale-sensitive information from your application and encapsulating it in external files such as resource files. Any locale-sensitive processing operations also must be encapsulated and handled in a g...
	If you are using character codesets that use wide character or multibyte encoding schemes, your application code for manipulation of strings must be modified to handle these character codesets. The following string operations are candidates for modif...
	For XVT-Design Users Only
	If you are an XVT-Design user, refer to the following list of general steps to internationalize your XVT application. Most of the information in these steps is described in greater detail in later sections of this chapter or in the XVT Platform-Speci...
	1. In the Application Attributes dialog, select Internationalization. This selection causes SPCL:I18N_Header, SPCL:I18N_URL, and SPCL:I18N_Main tags to be created (as described below), as well as inserting special localization macros.
	2. In the SPCL:I18N_URL tag in the ACE, you now see code similar to the following:
	3. In the SPCL:I18N_Header tag in the ACE, you now see code similar to the following:
	4. Still in the ACE, replace string literals in your code with calls to the LOCAL_C_STR macro (for details about this macro, see section 19.3.2.2 on page 19-36). Use the XVT-Design Find command to help you locate string literals.
	5. Using the SPCL:User_Header tag in the ACE, add the following code:
	6. Use the XVT-Design Generate Application command to generate all files.
	7. In your external files (those not generated by XVT-Design), replace string literals with calls to the LOCAL_C_STR macro.

	This marks the end of XVT-Design-specific information about internationalization.
	Localization

	Localization is quite straightforward once your application has been internationalized. The biggest part of localization is placing string literals in an external file that can be modified as required by specific locales.
	1. Decide which character codeset to use for translation depending on which languages you need to support and on which operating systems your application must execute. Different codesets used on the various platforms that XVT supports are listed in s...
	2. Translate string literals to the target language.
	3. Set up special strings such as dates and times for formatting.
	4. Select the appropriate keyboard modifiers, mnemonics and accelerators.
	5. Select fonts appropriate to the character codeset.
	6. Provide locale-specific icons and colors.
	7. Adjust text and graphic object sizes and positions.
	8. Compile locale-specific resource and help files.
	9. Establish the proper operating/window system locale-specific environment (set up environment variables, code pages, etc.).
	10. Set the application locale environment information (locale information can be bound at application build time or application startup time.
	For XVT-Design Users Only
	If you are an XVT-Design user, refer to the following list of general steps to localize your XVT application. Most of the information in these steps is described in greater detail in later sections of this chapter or in the XVT Platform-Specific Book...
	1. Execute the strscan utility on all of your *.c and *.url files to generate the include files strres.h and strdef.h. If you have carefully followed steps 4 through 7 (on page 19-5), strres.h now contains all your locale-specific strings. View both ...
	2. Make copies of strres.h and give them names that co-workers will recognize as locale-specific resource files, such as engres.h and gerres.h. You will want to adopt a file naming convention for your different versions of strres.h. Renaming the file...
	3. Using the SPCL:I18N_URL tag in the ACE, replace the reference to strres.h with references to a file of strings translated into German, gerres.h, and another file of English strings, engres.h. When the editing in your application resource file is c...
	4. Translate the strings in the locale-specific resource files, such as gerres.h, for the locales you need to support.
	5. Consider redefining the way dates or money variables are displayed (to match local practices). Likewise, in your external files (those not generated by XVT-Design), search for all sprintfs that you wish to format for locale-specific display. For m...
	6. Compile your resources and check the translation of text and the size and position of GUI objects.
	7. Adjust the size and positions defined by creation rectangles in strres.h to accommodate the increased or decreased lengths of the translated strings.

	You do not need to re-translate your entire strres.h file when you make changes to your application. Usually it is only necessary to regenerate strres.h and strdef.h using strscan, then identify the strings that have been added or changed and add the...
	8. Modify your makefile or makefile templates to build localized versions of your resources. If you wish to build, for example, a German version, you would also define LANG_GER_W52. The various compile constants you can use are listed in Table 19.2 o...
	9. If your makefile did not completely finish the build, you should now complete any unfinished steps in your build process.

	Example: This example shows a UNIX makefile that builds a German version of an XVT application:
	This marks the end of XVT-Design-specific information about localization.

	19.1.1.3. Terminology
	This section introduces the terminology that is used later to describe the details of internationalization and localization.

	19.1.2. Multibyte Awareness in XVT Applications
	This section provides an overview of the XVT Portability Toolkit (PTK) elements that support internationalization and localization and how you use these elements to adapt your XVT applications.
	19.1.2.1. Support for Character Codesets
	The XVT Portability Toolkit is internationalized to the extent that all of its API functions support both single-byte and multibyte characters (depending upon the value of ATTR_MULTIBYTE_AWARE). Applications can be localized to some languages without...

	19.1.2.2. Localized PTK Resources
	For your convenience, XVT provides compatible localizations of standard PTK resources and help text; the various codesets used to provide these resources are listed in Table 19.1.
	Table 19.1. Localized versions of standard PTK resources and help text predefined for five languages

	The XVT PTK data is externalized in one of three file types for localization by your application:

	19.1.2.3. Changes to PTK Release 4.0 Functions that Accept Strings
	XVT PTK functions that accept strings as arguments also accept multibyte strings for applications executing in multibyte-aware mode. However, for functions that require character index or buffer size parameters, the meanings of these parameters may h...

	19.1.2.4. Input Method Editors
	Input Method Editors (IMEs) are provided by native windowing systems to allow users to enter multibyte or wide characters through a keyboard that does not support these characters. On each system, certain attributes must be set to allow the user to c...

	19.2. How the XVT API Supports Internationalization
	Several different aspects of the XVT PTK API provide support for internationalization and localization. These API elements include:
	19.2.1. PTK Filenaming Conventions
	XVT’s PTK uses a set of conventions for defining relevant constants and filenames using three character abbreviations for language and three or four character abbreviations for character codeset (see Appendix A for a complete list of these abbrevia...
	Table 19.2. Language and character codeset constants and filenames recognized in the XVT Portability Toolkit (part 1 of 2)
	Table 19.2. Language and character codeset constants and filenames recognized in the XVT Portability Toolkit (part 2 of 2)

	19.2.2. XVT Portable Attributes
	This section contains information that amends section 2.4.
	Several XVT attributes enable internationalization and localization of your applications:

	19.2.3. XVT Data Types
	This section discusses the data types you will need to use in developing internationalized applications.
	19.2.3.1. Characters and Strings
	Single- and multibyte characters and strings are defined by an ANSI type in the following manners:
	XVT wide characters and strings are encapsulated by an XVT type in the following manner:
	There are two options for processing individual characters of a string:

	19.2.3.2. Byte Streams

	19.2.4. XVT Constants
	This section discusses the constants you will need to use in developing internationalized applications.
	19.2.4.1. Filename Sizes
	The XVT constant SZ_LEAFNAME defines the maximum byte length of a single token in a file pathname (a directory name or a filename). This maximum value takes into account any file extensions (including the periods '.') but excludes pathname delimiters...

	19.2.4.2. Character Sizes
	The XVT constant XVT_MAX_MB_SIZE defines the maximum byte size of the largest multibyte character on a specific platform. Use this constant to allocate memory for multibyte character arrays.
	Example: The following code shows how to convert a wide character string to the equivalent multibyte string using XVT_MAX_MB_SIZE to size the multibyte string array:

	19.2.5. XVT String Functions
	Some compilers do not support the processing of multibyte or wide characters in their ANSI C Libraries. XVT supplies functions which encapsulate this functionality on platforms that do and implements it on platforms that do not. These functions shoul...
	19.2.5.1. Character Set Conversions
	The following XVT functions support the conversion of characters or strings between wide characters and multibyte or single-byte characters:

	19.2.5.2. String Processing
	The following convenience functions are the only wide character processing functions provided by XVT:
	The following functions encapsulate ANSI C string operations and may be used for single-byte or multibyte character codesets (remember, you cannot mix single-byte and multibyte codesets within a single XVT application):

	19.2.6. E_CHAR Events
	E_CHAR Event Structure
	19.2.6.1. Processing Characters
	The EVENT substructure chr sent to a window contains the character code field (ch) which is an XVT_WCHAR. XVT_WCHAR is an encapsulation of the ANSI wchar_t type, although this implementation may vary depending on the amount of support supplied by nat...

	19.2.6.2. Virtual Keys
	XVT virtual key values are the K_* values (F1, Home key, etc.) defined in the xvt_defs.h header file. Virtual keys in character events may be detected in a variety of ways.

	19.2.6.3. Key Hook Attribute
	You can change the mapping of raw key codes (as generated by the keyboard) to XVT virtual key codes, or add new codes, by changing the default key hook function. This is done with the function xvt_vobj_set_attr and the attribute ATTR_KEY_HOOK.

	19.2.7. Resource File Binding
	This section contains information that supplements Chapter 5, Resources and URL.
	In addition to allowing external XVT resources (see section 5.2 on page 5-3), the XVT Portability Toolkit allows resources to be bound to the application at application startup time. Executing any localized application will, of course, require that y...
	19.2.7.1. Configuration Attributes
	Two attributes, ATTR_APPL_NAME_RID and ATTR_TASKWIN_TITLE_RID, may be used to localize the strings used for appl_name and taskwin_title in the XVT_CONFIG initialization structure. The application cannot load the strings from resources before calling ...

	19.3. Internationalizing XVT Applications
	This section describes the adaptations required to write an internationalized XVT application:
	19.3.1. Using the XVT Universal Resource Language (URL)
	In order to avoid recompiling your application for each locale you need to support, place locale-sensitive data external to your application source code. For XVT applications, the easiest way to do this is with the XVT Universal Resource Language (UR...

	19.3.2. Extracting String Literals
	Any string literals in your application code that will be seen by users should be moved to an external resource file so they can be translated outside of the program. These string literals should be replaced with calls to xvt_res_get_str to obtain th...
	19.3.2.1. Character Codeset Issues
	Although most multibyte character encoding schemes contain the subset of ASCII characters, only those characters included in the ISO 646 character codeset are guaranteed to be invariant. This occasionally may cause problems for some special character...

	19.3.2.2. strscan Utility and String Literal Convenience Macros
	XVT-Design generates source code and resource files with all locale-specific information defined in a few special macros. The XVT utility program, strscan, may be used to scan these files to search for the special macros.
	The strscan utility program scans XVT-Design-generated source code and URL resource files for references to special macros. strscan uses the arguments passed to these macros to generate a source code include file that contains resource IDs (strdef.h)...
	XVT-Design uses the macro window IDs as a basis for creating resource IDs for its generated calls to LOCAL_C_STR. If you are using strscan with XVT-Design, and you have defined the macro XVT_LOCALIZABLE, then you should not create any macro window id...

	Example: The following code fragments show several lines of non-internationalized application code followed by its adaptation using LOCAL_C_STR and the corresponding header and resource code generated by the strscan utility:

	19.3.2.3. Renaming and Changing strscan-generated Files
	By default , strscan generates two files: 1) strres.h (resource include file), and 2) strdef.h (source code include file). You may override these default filenames and use names of your own.

	19.3.3. Processing Characters and Strings
	The three main aspects of character and string processing in internationalized XVT applications are:
	19.3.3.1. Replacement ANSI String Functions
	The standard C libraries are not multibyte-aware on some platforms supported by XVT. The XVT Portability Toolkit (PTK) provides portable multibyte-aware replacements for most ANSI C library functions that take strings as parameters. XVT string functi...
	The following list shows standard ANSI C library functions and their XVT API replacements.

	19.3.3.2. Other XVT String Functions
	The following are additional XVT-supplied functions that do not have corresponding ANSI C library functions but that you might want to use when coding your internationalized application:

	19.3.3.3. Manipulating String Pointers
	Since multibyte characters can be one or more bytes long, single- byte character pointer arithmetic is inadequate for multibyte-aware XVT applications. Use the XVT-provided functions xvt_str_get_next_char and xvt_str_get_prev_char for incrementing an...
	Example: In this example, single-byte pointer arithmetic code is adapted for a multibyte-aware application:

	19.3.3.4. Wide Characters
	XVT wide characters (XVT_WCHAR) provide another way to manipulate multibyte character strings. The Portability Toolkit (PTK) provides the following functions for converting single characters or strings between multibyte encodings and wide character e...
	Example: The code in the previous example could also be written as follows for wide character encoding:

	19.3.3.5. String Buffer Sizes
	When working with multibyte character strings, it is often important to differentiate between the number of bytes and the number of characters in a string or substring. The PTK provides the following functions for counting bytes and characters:
	Example: In this example, strlen is replaced with multibyte-aware code.

	19.3.3.6. Filenames and Pathnames
	Since file and pathnames may contain multibyte characters, they must be treated like other multibyte strings. All PTK functions and data types that accept file or pathname strings are multibyte capable.

	19.3.4. Formatting Locale-specific Strings
	In some cases, moving string literals to a resource file for translation may not provide full string internationalization. For example, the month and date fields of a date/time stamp created via sprintf may need to be swapped for different locales. T...
	Example: In this example, an ANSI C style string format specifier is replaced by the corresponding XVT string format specifier:

	19.3.5. Handling Character Events
	The EVENT substructure chr sent to a window for an E_CHAR character event contains a character code field (ch) defined as an XVT wide character type XVT_WCHAR. Multibyte-capable applications use the XVT function xvt_str_convert_wc_to_mb to convert th...
	Example: This code demonstrates the processing of a multibyte character delivered in an E_CHAR event:

	19.3.6. Extracting Graphics and Colors
	You may need to place graphics and color information in an external file when coding internationalized applications.
	19.3.6.1. Icon Controls
	Objects such as control icons and XVT images can be placed in an external resource file. Use the icon URL statement to define an external bitmap for an icon control.

	19.3.6.2. Drawn Images
	19.3.6.3. Colors
	XVT does not support a color statement in URL; however, you may use userdata statements to define external color references.
	Example: This example demonstrates how three XVT colors may be stored externally and obtained from a single window resource userdata statement (implemented for a single-byte character codeset):

	19.3.7. Loading Fonts
	You need to make sure that the fonts used by your application are appropriate for the character codeset. For example, an application localized for Japanese must use a Japanese font. XVT provides several mechanisms for mapping fonts. The most straight...

	19.3.8. Generalizing GUI Objects Positions and Sizes
	If you are using URL to define your GUI objects, much of the work involved in externalizing your size and position data (XVT rectangle type RCT and point type PNT) is done. However, for data that is not associated directly with a particular GUI objec...
	Example: This example demonstrates how an XVT rectangle may be stored externally, obtained from a single window resource userdata statement, and used to set the size of a window (implemented for a single-byte character codeset):

	19.4. Localizing XVT Applications
	Once you have internationalized your XVT application, localizing it is very straightforward. There are several tasks involved in localizing your XVT application:
	19.4.1. Selecting the Environment
	Before adapting your resource and help files, you must select a character codeset that supports the target language. In making this decision, evaluate the language characters that must be represented, the fonts that support these characters, and the ...

	19.4.2. Translating Strings
	Any strings that may be displayed to your users are candidates for language translation. These include, but are not limited to, menu item titles, keyboard accelerators and mnemonics, window titles, dialog titles, control titles, text and mnemonics, e...
	You will need to maintain a copy of each file for each locale you need to support. Alternatively, you may be able to keep a single copy of each file with #ifdef’d resources for each locale. However, this alternative is only possible if your target ...
	Translating strings directly in XVT-Design only works in target environments where XVT-Design is compatible with the character codeset and can properly display translated strings. If you have used the strscan utility with XVT-Design, then translating...

	19.4.2.1. Setting Special Format Strings
	19.4.2.2. Using Standard XVT Resource, Default Help and Error Message Files
	XVT provides localized versions of its standard resource text and help source text for U.S. English, German, French, Italian, and Japanese (see section 19.1.2.2 on page 19-15). These localizations are encapsulated in include files referenced by XVT U...
	1. Translate all strings in the file uengasc.h (located in the ...include directory) to your target locale. The standared URL resources file uengasc.h contains data used internally by the PTK. (Remember to adjust any object sizes and positions to ref...
	2. If you are using the online hypertext help system, translate the standard XVT help text in file hengasc.csh.
	3. If your users will be exposed to any error messages from the error handling facility, translate the text in file ERRCODES.TXT to your target locale.
	4. Rename your files according to the naming conventions described in section 19.2.1 on page 19-18.
	5. Following the conventions in section 19.2.1, add code to the file url.h to handle the LANG_* variable for your target locale. For example, add the lines:

	19.4.3. Replacing Colors and Graphics
	19.4.4. Adjusting Object Sizes and Positions
	One of the most tedious aspects of adapting your internationalized application to a particular locale can be adjusting the sizes and positions of GUI objects and drawn objects. This includes adjusting the creation rectangles for windows, dialogs and ...

	19.4.5. Using XVT’s Utility Programs to Write Localized Applications
	URL files and the help source text files are compiled (via curl and helpc respectively) into binary resource files. And, although the methods differ, each of these binary files can be associated with your XVT application at startup time or runtime. T...
	19.4.5.1. curl
	Tip: To run the resource compiler and include German default XVT resources for an XVT/Win32 application, use a command line similar to the following:

	19.4.5.2. helpc
	Tip: To run the help compiler and include German default help topics for an XVT/Win32 application, use a command line similar to the following:

	19.4.6. Localizing the XVT Portable Help Viewer
	To use the standalone version of the XVT portable help viewer (helpview) with a localized XVT application, follow these steps:
	1. Localize the standard XVT resource and help text files as described in section 19.4.2 on page 19-48. These standard files are included by helpview.url, the help viewer resource file.
	2. Compile the help viewer resource file helpview.url in the ...src\helpview directory. For example:
	3. In the directory which contains your application executable, create a help viewer language configuration file helpview.lng. This file contains a single word of text—the name of the language of your target locale. The language name may be any lan...
	4. When your application invokes helpview, the PTK uses the language name defined in helpview.lng to determine the correct resource file to bind with helpview.

	19.4.7. Selecting the Environment and Initializing the Application
	The startup procedure for a localized XVT application is very similar to a single-locale XVT application. However, in addition to other attributes, your localized application must notify the PTK that it is multibyte aware. The application does this b...
	Example: This example code demonstrates how to select locale files and set configuration strings at application startup. In this example, the locale name is read from an external file (for portability with XVT/Mac applications). You also may want to ...
	Source code:
	Application header file (sample.h):
	U.S. English URL resource file:
	Japanese URL resource file:

	20
	Memory Allocation
	This chapter contains information about the following memory allocation topics:
	20.1. Application and Global Heaps
	20.2. XVT Substitutes for malloc, realloc, and free
	Internally, the XVT libraries never call the standard C functions malloc, realloc, or free directly. Instead, they call xvt_mem_alloc, xvt_mem_realloc, or xvt_mem_free. A main purpose of the xvt_mem_* functions is to control precisely how XVT librari...

	20.3. Allocating Memory on the Global Heap
	Tip: To allocate memory on the global heap:
	Tip: To access the memory referred to by a GHANDLE:
	Tip: To unlock memory when you’re done using it:
	Tip: To free a global memory block:
	Tip: To obtain the size of a global memory block:

	20.4. ATTR_MEMORY_MANAGER Attribute
	You can write customized memory management functions for your applications. To use them, you register the functions by means of XVT’s portable ATTR_MEMORY_MANAGER attribute.
	Example: The following code sets the memory management functions, which must be done before xvt_app_create:

	20.5. Resource Memory Allocation
	Many XVT objects or resources have their own dedicated memory allocation functions. For example, xvt_cb_alloc_data and xvt_cb_free_data respectively allocate and free data for the clipboard. If objects provide memory functions, you should use these f...

	21
	Diagnostics and Debugging
	This chapter discusses diagnostic and debugging aids that can help you identify and handle code errors. XVT provides the following tools for dealing with errors:
	21.1. XVT Error Checking Techniques
	To help you program reliably and defensively, XVT uses these general techniques for checking errors:
	21.1.1. Arguments and Return Values
	21.1.2. Error Handlers
	If XVT detects an error during argument validation or while processing a request, it reports the problem to one or more error handlers. Error handlers post and/or record error messages and tell the program that an error occurred. Sometimes they even ...

	21.2. XVT Error Signaling
	Whenever XVT encounters an error, it signals this error to one or more error handlers. Except in the case of fatal errors, XVT continues after the signal, and typically also returns some indication of failure, such as a NULL pointer. XVT supplies two...
	21.2.1. Error Codes (XVT_ERRID)
	When XVT signals an error, it identifies the error with an error code (of type XVT_ERRID). This error code is used to retrieve an appropriate error message from the error message file. It also allows the error handler to deal with messages selectivel...

	21.2.2. Types of Errors
	Error signaling functions, such as xvt_errmsg_sig, classify errors by their level of severity. Error message handlers can then use these severity classifications to decide how to handle a particular error signal:

	21.2.3. Error Message Objects
	Each error message signaling call (xvt_errmsg_sig) creates an error message object (of type XVT_ERRMSG), which is passed to individual error handlers. This object exists only during the duration of the call to xvt_errmsg_sig. When that function termi...

	21.3. Error Handlers
	Whenever xvt_errmsg_sig signals an abnormal condition (that is, an error) the XVT error messaging system calls an error handler function. An error handler is defined by a typedef XVT_ERRMSG_HANDLER. Its first argument is an error message object (of t...
	An error handler can do one of two things:
	21.3.1. Error Handler Hierarchies
	Your application can establish a hierarchy of error handlers:
	21.3.1.1. Stacked Error Handlers
	Stacked error handlers have a scope limited to a particular window event handler call. You must explicitly push them onto the error handler stack (with xvt_errmsg_push_handler) and pop them off it (with xvt_errmsg_pop_handler).

	21.3.1.2. Application-supplied Error Handlers
	XVT allows your application to register an application-supplied, permanent error handler that is called immediately before the XVT- supplied “last chance” error handler. You might do this for the following reasons:
	Tip: To register a permanent application error handler:

	21.3.1.3. The XVT Error Handler
	The XVT-supplied “last chance” error handler appends all messages to the debug file (if present), and posts an appropriate dialog. The dialog provides the following information:

	21.4. XVT’s errscan Tool
	XVT supplies an errscan tool, which can examine your application code and perform the following operations:

	21.5. Error Files
	XVT provides two error definition header files and an error message file. In addition, your application can write error tracing information into a temporary debug file.
	21.5.1. Error Header Files
	XVT provides header files that contain error definitions.

	21.5.2. XVT Error Message File
	All XVT-signaled messages are collected in an error message file, ERRCODES.TXT. The error messaging system retrieves message text from this file. This allows you to localize messages by substituting translated text in the file.
	Tip: To redefine the location of the error message file:

	21.5.3. Debug File for Error Tracing
	To help with debugging, you can write error tracing information into a temporary debug file. XVT supplies a function and a macro to append information to the debug file:
	Tip: To redefine the location of the temporary debug file:

	21.6. Error Dialogs
	When a program encounters an error, it can either perform some recovery, or tell the user about the error (if the error resulted from incorrect use of the program). XVT provides standard dialogs for reporting warnings, errors, and fatal errors. You c...

	22
	Hypertext Online Help
	XVT’s online help feature provides a powerful, flexible, hypertext- based help system for your applications. The online help feature includes these key elements:
	22.1. Help System Components
	XVT’s help system contains the following software components:
	The relationship of the various components of the XVT help system is shown in Figure 22.1.
	Figure 22.1. Help system components

	Some GUI platforms provide their own help viewers. On these platforms, the XVT help system includes these additional components:

	22.2. XVT Help Viewer
	The help viewer serves as the interface between users and the available help information. In other words, the help viewer is the part of the help system that users see. This section describes how the XVT help viewer operates, from the application use...
	22.2.1. Help Windows
	The online help system displays information in two kinds of windows:

	22.2.1.1. Topic Windows
	Topic windows display primary help topic information—that is, the main help text itself. Topic windows have the following features:

	22.2.1.2. Pop-up Windows
	Pop-up windows display short-term information, such as glossary definitions and hot button topics. Since pop-up windows quickly display short help topics, they have a limited number of features as compared to topic windows:
	22.2.2. Navigation
	Help topic windows contain navigation controls to enable application users to move from one help topic to another, as shown in Figure 22.2.
	Figure 22.2. Navigation controls in a topic window

	The topic window contains several push buttons for navigating from topic to topic, and invoking other help system dialogs:

	22.2.2.1. Go To Dialog
	Clicking the Go To button in a topic window opens a modal dialog, as shown in Figure 22.3.
	Figure 22.3. Modal Go To dialog

	Tip: To return to a previously marked topic:
	1. Select the topic name in the Bookmarks list.
	2. Click Go to Mark. -OR- Double-click the topic name.

	Tip: To dismiss the Go To dialog without changing topics:
	Click Cancel.

	22.2.3. Searching
	An application user can search for help topics with the Search dialog; this dialog is shown in Figure 22.4. To invoke this dialog, the user can either click the Search button in a topic window, or choose Search from the Help menu.
	Figure 22.4. Search dialog

	Help topics are identified either by topic names or by keywords (optional). Two radio buttons in the Search dialog determine which of these appears in the Search Items list box, and thus how help topics are displayed:

	22.3. Invoking Help
	Application users can ask for help information in several ways. They can get two kinds of context-sensitive help: spot or object-click help. Or they can choose help topics from the Help menu. In addition, your application can display help information...
	22.3.1. Spot Help
	Spot help is context-sensitive. It presents help information associated with the GUI object that has focus. To invoke spot help, the user presses a special key (often F1 or Help), or chooses On Context from the Help menu.

	22.3.2. Object-click Help
	Object-click help is also context-sensitive. It is similar to spot help, but works in reverse—the user requests help by choosing Object Click from the Help menu, then selecting the desired GUI object. Help information is displayed for that object.

	22.3.3. Menu Help
	Menu help simply lets the user choose one of several help topics from the Help menu. Some or all of following topics are placed on the Help menu by default:

	22.3.4. Invoking Help Programmatically
	The XVT help system automatically handles the previously described methods of invoking help. However, you can also display help information under control of your application.
	Tip: To display a help topic:
	Call xvt_help_display_topic.

	22.4. Adding Online Help to an Application
	XVT-Design lets you quickly associate help topics with GUI objects. In each attribute dialog for the GUI Objects you create with XVT-Design, you can specify the appropriate help topic in the dialog’s “Help Topic” list button.
	This section describes how to add online help to your XVT-based application. To add online help to your application, you would follow these general steps:
	1. Write a help text source file, a plain-text file that contains the text for the online help information.
	2. Add formatting commands to your help source file, using the help system markup language commands.
	3. Place definitions for symbolic names for the help topics in a header file.
	4. Compile your help source file with helpc, the help-text compiler.
	5. Add a Help menu to your application’s menu resource definitions.
	6. Add code to your application to open and close the compiled help file.
	7. Add code to your application to associate help topics with GUI objects. -OR- Create a help topic association file.
	XVT-Design performs steps 5, 6, and 7 for you.

	The following sections explain how to accomplish each of these steps. They cover the following topics:
	22.4.1. Help Viewers
	The XVT help system provides two different kinds of help viewers:

	22.4.2. Header Files
	Individual help topics are referred to by integer identifiers, which you can put into a header file.
	Tip: To define symbolic names for help topic identifiers:
	Use #define statements in a header file.

	22.4.3. Resource Files
	The xvt_help.url file contains URL definitions of all resources used by the help system. This file is included automatically when you include url.h in your source files. If your application does not use the help system, you can omit the help system...
	Tip: To include the help system’s resources in your application:
	Tip: To omit the help system’s resources from your application:
	Define the symbol NO_HELP_RESOURCES before including url.h, like this:

	22.4.4. Creating a Help Menu
	XVT-Design’s Menubar Editor includes the default help menu as a standard menu that you can add to any menubar in your application.
	The help system provides a default help menu that conforms to the native style guidelines for each GUI platform. This menu’s resource ID is DEFAULT_HELP_MENU. It is included in the default menubar.
	Tip: To add the help menu to your resource file:
	Use the predefined menu identifier DEFAULT_HELP_MENU in your menubar. For example:

	Tip: To omit the help menu from the default menubar:
	Define the symbol NO_STD_HELP_MENU before including url.h, like this:

	22.4.5. Opening a Help File
	Before your application can display any help topic information, you must open a help file.
	Tip: To open a help file:
	Call xvt_help_open_helpfile while handling the E_CREATE event for your application’s task window.

	Tip: To close a help file when it is no longer needed:

	22.4.6. Associating Topics with Objects
	If your application uses the context-sensitive help invocation methods (spot help and object-click help), you must associate specific help topics with the appropriate GUI object.
	In XVT-Design, you can associate topics with any WINDOW or MENU_TAG when you set the object’s attributes. XVT-Design automatically inserts into the source code the correct function calls to associate the topics with the GUI objects.

	Tip: To programmatically associate a help topic with a WINDOW (window, dialog, or control):
	Tip: To associate a help topic with a menu item:
	Tip: To associate a help topic with any object:

	22.4.6.1. Association Tables
	As an alternative to calling xvt_help_set_win_assoc or xvt_help_set_menu_assoc, you can create associations between help topics and objects in file-based association tables. An association table is a text file that lists resource ID values and their ...

	22.4.6.2. Association Table File Format
	Association table files must be located in the same directory as the help topic files. They must have the same name as the corresponding help topic file, with the extension .csa.
	You can place comments freely in association files. Any line beginning with a space, Tab, or ‘#’ character is ignored.
	Each line in the association table associates one help topic with one GUI object. The lines have the following format:
	22.4.7. Disassociating Topics from Objects
	During program execution, your application may need to change which help topics are associated with GUI elements. For example, when an error occurs, you might wish to remove the usual help topic and replace it with a help topic that offers suggestion...
	Tip: To remove the association between a GUI object and a help topic:
	Tip: To remove the help associations for a container and all the objects it contains:

	22.4.8. Event Handling
	The help system handles help-related user events automatically. In most situations, your event handlers will never receive an E_HELP event. XVT’s help system intercepts and processes these events before your event handlers are called. This automati...

	22.4.9. Displaying Help Topics
	In addition to letting the help system automatically handle help requests, your application can explicitly display help topics.
	Tip: To display a help topic:
	Call xvt_help_display_topic.

	22.4.10. Handling Object-Click Help
	Normally, the application user invokes object-click help. However, your application can also invoke it directly. Once object-click help is invoked, the mouse pointer is trapped and events are consumed by the help system. Object-click mode terminates ...
	Tip: To invoke object-click help mode:
	Tip: To terminate object-click help mode:

	22.4.11. Modal Dialogs and Help
	22.5. Help Source File Format
	Help source files contain the following elements:
	Tip: To create your help source files:
	22.5.1. How the Help System Applies Formatting Commands
	Most of the formatting commands take effect at runtime, rather than compile time. Together, the compiler and runtime parser format the help text following these rules:

	22.5.2. Predefined Help Topic Information
	XVT provides some reserved topic identifiers, as well as pre-written help topics for several of them.

	22.5.2.1. Reserved Help Identifiers
	The following symbols are reserved topic identifiers, which correspond to the items on the predefined Help menu:
	The following symbols are reserved topic identifiers, which correspond to predefined XVT dialogs:

	22.5.2.2. Predefined Help Topics
	XVT provides help topic text for several of the reserved topic symbols, including XVT_TPC_HELPONHELP, XVT_TPC_KEYBOARD, and others. The xvt_help.csh file contains these topics.
	Tip: To include all of the XVT-provided topics in xvt_help.csh:
	Add this line to the end of your help source file:

	Tip: To include some, but not all, of the topics in xvt_help.csh:
	1. Provide your own help topic text for the topics you wish to customize, in your help source file.
	2. At the bottom of your help source file, undefine all reserved topic identifiers whose XVT-provided topic text you want to omit, and redefine them as –1. The compiler skips any help topics that have a topic identifier of –1.
	3. Add this line to the end of your help source file:

	Example: Suppose you want to provide custom help text for the XVT_TPC_KEYBOARD topic, but use the XVT-provided text for all other reserved topics. Your help source file would contain the following text:
	22.6. The Help Compiler
	XVT’s help compiler, helpc, compiles your help source files into a compact, binary format. This file format allows the help system to rapidly access your help text while your application executes. A compiled help file is portable across all XVT pla...
	22.6.1. Manifest Constants
	The help compiler always predefines the following symbols before compiling the help source:
	Example: This code conditionally compiles a topic for the native MS-Windows help viewer, Winhelp:

	22.6.2. Help Source File Text Limitations
	Help source files are constrained by the following limitations:

	A
	Languages and Codesets
	This appendix lists XVT abbreviations for languages and character codesets. However, XVT does not directly support all these languages and character codesets. The five languages that are fully supported at this time are:
	A.1. Language Abbreviations
	XVT <3 character language code> abbreviations are as follows:

	A.2. Character Codeset Abbreviations
	The XVT <3-4 character codeset> abbreviations are one of the following:

	B
	Utilities
	This appendix contains information about the following XVT utilities:
	B.1. String List (SLIST) Functions
	A string list is a linked list of zero or more NULL-terminated C character strings in some order. XVT refers to string lists with the type SLIST (whose actual definition is hidden). Each string is associated with a long word (32 bits) that can hold a...
	Tip: To create an SLIST:
	Tip: To dispose of an SLIST (freeing its memory):
	Tip: To add a string (along with a long word of data) or another SLIST to an existing SLIST:
	Tip: To insert a new string (along with a word of data) into an existing SLIST in alphabetical order:
	Tip: To add a string or SLIST at a given position:
	Tip: To remove a string from an SLIST:
	Tip: To count the number of elements in an SLIST:
	Tip: To get a textual representation of an SLIST:
	Tip: To find out if you have a pointer that is pointing to an SLIST:
	SLIST_ELT Objects

	Another kind of object, an SLIST_ELT, holds an element of an SLIST (string plus long word of data). Given an SLIST_ELT you can do the following:
	Tip: To retrieve an SLIST_ELT’s string and data:
	Tip: To retrieve the string and data by numeric index (starting with 1):
	Tip: To loop through all elements of an SLIST:
	Tip: To change the data associated with an element:

	B.2. The I/O Stream Object
	The I/O stream object is an abstraction of an arbitrary data input/ output stream (“stream” implies that individual bytes are always processed sequentially and that there is never any need for direct memory access—the classic example is the seq...
	Tip: To create an I/O stream object for reading data from a file:
	Tip: To create an I/O stream object for writing data to a file:
	Tip: To create an I/O stream object for reading data:
	Tip: To create an I/O stream object for writing data:
	Tip: To get a pointer to the data stream context of an I/O stream object:
	Tip: To destroy an I/O stream object:

	B.3. NOREF
	Tip: To establish a reference to a function’s otherwise unused argument:

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

